

IV ENCONTRO INTERNACIONAL DE GESTÃO, DESENVOLVIMENTO E INOVAÇÃO

USO DE "PÓ DE ROCHA" EM SISTEMAS DE PRODUÇÃO AGRÍCOLA: breve análise sobre viabilidade técnica

Carlos Alberto Dettmer Instituto Federal de Mato Grosso do Sul (IFMS), carlos.dettmer@ifms.edu.br

Urbano Gomes Pinto de Abreu Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Urbano.abreu@embrapa.br

> Denilson de Oliveira Guilherme Universidade Católica Dom Bosco (UCDB), rf3223@ucdb.br

> Jayme Ferrari Neto Universidade Católica Dom Bosco (UCDB), rf3513@ucdb.br

Tatiana Lagemann Dettmer Instituto Federal de Mato Grosso do Sul (IFMS), tatiana.dettmer@ifms.edu.br

RESUMO

Os avanços tecnológicos e os ganhos econômicos da agricultura observados a partir do uso das novas técnicas de cultivo, em especial o SPD (Sistema de Plantio Direto), contribuíram e ainda contribuem na redução do processo erosivo dos solos, diminuindo em partes o assoreamento dos rios e aumentando a eficiência na utilização dos fertilizantes por meio da rotação de culturas e da ciclagem dos nutrientes. A introdução dos chamados remineralizadores de solo, sob a forma de 'pó de rocha', é uma técnica antiga, porém, seu uso na agricultura atual, depende ainda de estudos técnicos, econômicos e ambientais, para se tornar tecnologia efetiva. Dados de análise estatística da produtividade de milho safrinha 2019, neste trabalho, mostraram uma superioridade em termos de produtividade, quando comparado o uso de adubo solúvel NPK na base de plantio em relação ao uso de 06 e 12 Mg pó de basalto ha⁻¹ a lanço na cobertura. É importante uma análise dos custos financeiros para afirmar sobre a viabilidade do uso da tecnologia.

Palavras-chave: Rochagem; agricultura; remineralizadores; sustentabilidade.

IV ENCONTRO INTERNACIONAL DE GESTÃO, DESENVOLVIMENTO E INOVAÇÃO

1. INTRODUÇÃO

As primeiras técnicas de uso de corretivos e fertilizantes na década de 1950, já mostravam ganhos significativos em termos de rendimentos dos cultivos após alguns anos (LAPIDO-LOUREIRO et al., 2008). Mais tarde, com a introdução do Plantio Direto (PD), que logo se consolidaria como Sistema de Plantio Direto (SPD), os ganhos foram ainda mais representativos, principalmente no que diz respeito ao manejo e conservação do solo e da água. Os sistemas, Integração Lavoura Pecuária (ILP) e Integração Lavoura Pecuária Floresta (ILPF), difundidos no último período, confirmam a necessidade e a importância do uso de técnicas conservacionistas afim de minimizar os impactos ao ambiente e buscar produzir com mais sustentabilidade.

O uso dos chamados remineralizadores de solo, sob a forma de 'pó de rocha' (rochagem / "rocks-for-crops"), com a exploração e uso de rochas e minerais, é uma técnica antiga, e surge como mais uma alternativa, porém, seu uso na agricultura atual depende ainda de estudos técnicos, econômicos e ambientais, para se tornar tecnologia efetiva e viável (LAPIDO-LOUREIRO et al., 2008).

Resultados positivos como, aumento de pH, melhora da estrutura do solo e suprimento de macro e micronutrientes têm sido apontados em trabalhos conduzidos por pesquisadores, grupos de estudos e agricultores ao utilizarem pó de rocha em substituição total ou parcial dos fertilizantes. Os principais resultados e o maior número de pesquisas, são observados no âmbito da agricultura familiar e em sistemas agroecológicos de produção (THEODORO et al., 2006; RIBEIRO et al., 2010; BRANDÃO, 2012; THEODORO et al., 2012; SOUZA, 2014).

Na busca em promover o controle local dos recursos, adaptando-os a cada meio, respeitando realidades específicas e levando em consideração todo contexto, o uso do pó de rocha em consonância com as demais práticas agropecuárias conservacionistas, pode vir a ser, uma forma de resguardar a soberania na produção de alimentos, gerando excedentes de renda e promovendo qualidade de vida, sendo importante ferramenta para ocorrência de ganhos ambientais, sociais e econômicos (EMBRAPA, 2018; THEODORO et al., 2006).

2. METODOLOGIA

2.1. LOCALIZAÇÃO E CARACTERIZAÇÃO CLIMÁTICA DO LOCAL

O Trabalho de campo foi conduzido em área de cultivo de fazenda. Altitude aproximada do local 361 metros (Google Earth, 2019). De acordo com o sistema de classificação

IV ENCONTRO INTERNACIONAL DE GESTÃO, DESENVOLVIMENTO E INOVAÇÃO

geoambiental do GNTF/MS, o solo da região e local pode ser classificado como um latossolo vermelho distroferrico de textura média (IMASUL, 2016). O clima subtropical de inverno seco (Cwa) conforme classificação Köeppen é característico da região sul do estado de Mato Grosso do Sul, tendo predominância de verões chuvosos (FIETZ, 2001).

O experimento foi organizado na forma de faixas de cultivo. Cada parcela teve 36 m de largura e 500 m de comprimento, totalizando 18.000m². As subparcelas ou blocos com 5 m de comprimento e 2,25 m de largura. Dessa forma, a abordagem experimental adotada foi o delineamento experimental de blocos ao acaso (DBC), tendo 5 (cinco) repetições em cada parcela. Os tratamentos foram:

Tratamento 1 (T1) ou controle – utilizou-se adubo químico solúvel, fórmula 10.15.15 (NPK) na dosagem de 0,25 Mg ha⁻¹ na base de plantio.

Tratamento (T2) – sem adubação química solúvel na base de plantio. Foram utilizados 12 Mg ha⁻¹ de pó de basalto, aplicados sem uso de adubo químico solúvel na base de plantio.

Tratamento 3 (T2), utilizou-se 06 Mg ha⁻¹ do pó de basalto, sem uso de adubo químico solúvel na base de plantio.

O plantio da área foi realizado em 23/02/2019, cultivar Pionner 30S31VYH com tecnologia Leptra de proteção contra insetos. O tratamento de sementes com inseticida e fungicida foi realizado momentos antes do plantio. Para adubação de cobertura foi utilizado fertilizante nitrogenado sólido (ureia) na dosagem de 120kg/ha⁻1 em todos os tratamentos foi realizada uma pulverização área utilizando inseticida químico para controle de percevejo marrom (*Euschistus heros*). Todas as operações foram realizadas utilizando máquinas e implementos da fazenda.

Quadro 1. Resultado da análise química quantitativa total dos elementos presentes no basalto utilizado para adubação

•	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	CaO	MgO	K ₂ O	Na ₂ O	TiO ₂	MnO	P ₂ O ₅
Amostra	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
1	50,43	11,94	15,28	7,56	3,69	1,86	2,42	4,01	0,21	0,65

Nota: Resultados conforme relatório de análise química realizado através de espectometria de fluorescência de Raios – X, CRTI Goiânia, GO - Brasil.

Fonte: Elaborado pelos autores

2.2. COLHEITA E AMOSTRAGENS DA PRODUÇÃO

A colheita dos blocos amostrais foi realizada manualmente na data de 28/07/2019. Para

IV ENCONTRO INTERNACIONAL DE GESTÃO, DESENVOLVIMENTO E INOVAÇÃO

avaliação e determinação da produção por parcela (tratamento) foi feita a debulha manual dos grãos de cada bloco. Após analisados índices de impureza e umidade, seguindo padronização para 13% de umidade foi realizada a pesagem dos grãos separadamente por bloco. Com isso foi possível estimar a produção por hectare.

2.3. Análise estatística

Os dados foram submetidos à análise de variância pelo teste F. Para ambos os fatores as médias foram comparadas pelo teste t (LSD) a 5% de probabilidade. O programa estatístico utilizado foi o SISVAR (FERREIRA, 2000).

3. Resultados e discussão

Os resultados apresentados a seguir não são definitivos, estão sendo avaliados, necessitando de análise mais aprofundada a partir dos demais dados de campo que ainda serão coletados para compor o resultado final.

Tabela 5. Componentes de produção e produtividade de milho obtido na safrinha 2019 nos 3 tratamentos acompanhados

Tratamentos	Espigas ha ⁻¹ (n°)	Massa de mil grãos (g)	Produtividade (kg ha ⁻¹)		
T1 – 0,25 Mg NPK ha ⁻¹	46933a1	334,6a2	5980a2		
T2 – 12 Mg pó de rocha ha ⁻¹	44444a1	312,8a1	4847a1		
T3 – 06 Mg pó de rocha ha ⁻¹	42667a1	316,8a1a2	4757a1		
	Probabilidade dos valores de F				
	0,1674	0,0667	0,0178		

Médias seguidas de letras distintas na coluna diferem estatisticamente pelo teste LSD ($p \le 0.05$).

Fonte: Elaborado pelos autores

4. CONCLUSÕES

A partir desta breve avaliação e análise estatística, pode se observar que existiu diferença entre os tratamentos no que diz respeito à produtividade da safra de milho avaliada. Ocorreu superioridade em termos de produtividade, quando comparamos o uso de adubação química solúvel na base de plantio em relação ao uso do pó de basalto em cobertura. É importante e necessário, análise dos custos financeiros para afirmar a viabilidade do uso da tecnologia.

Por mais que a substituição total dos fertilizantes solúveis não seja possível e viável, integrar o uso de materiais disponíveis e com condições de utilização pode vir até a ser uma

IV ENCONTRO INTERNACIONAL DE GESTÃO, DESENVOLVIMENTO E INOVAÇÃO

forma de atenuar problemas relacionados a estrutura de solo, controle de ervas, doenças, etc., tendo como consequência uma diminuição nos custos totais da produção.

REFERÊNCIAS

BRANDÃO, J. A. V. Pó de rocha como fonte de nutrientes no contexto da agrogeologia. **Dissertação (Mestrado)**. Universidade Federal de São Carlos, 2012. Disponível em: https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/142/4824.pdf?sequence=1&isAllowed=y">https://repositorio.ufscar.br/bitstream/handle/ufscar/handle/ufscar.br/bitstream/handle/ufscar.br/bitstream/handle/ufscar.br/bitstream/handle/ufscar.br/bitstream/handle/ufscar.br/bitstream/handle/ufscar.br/bitstream/handle/ufscar.br

EMBRAPA. Visão 2030: **O futuro da agricultura brasileira**. Brasília, DF: Embrapa, 2018. 212p.

FERREIRA, D. F. Análise estatística por meio do SISVAR para Windows versão 4.0. In: Reunião Anual da Região Brasileira da Sociedade Internacional de Biometria, 45, 2000, São Carlos. **Anais...** São Carlos: UFSCar, 2000. p. 255-258.

FIETZ, C. R. Caracterização Climática da Região de Dourados Visando à Prática da Irrigação. In: URCHEI, M. A. (Ed.). **Princípios de Agricultura Irrigada: Caracterização e Potencialidades em Mato Grosso do Sul.** 1 ed. Dourados: Embrapa Agropecuária Oeste, 2001. p. 69–76.

IMASUL. Geoambientes das Regiões de Planejamento do Estado de Mato Grosso do Sul pertencentes à Faixa de Fronteira. Campo Grande, MS, 2016. Disponível em: http://www.imasul.ms.gov.br/wp-content/uploads/2016/02/Geoambientes-da-Faixa-de-Fronteira-Versao-2016.pdf>. Acesso em: 10 de abr. de 2020.

LAPIDO-LOUREIRO, F. E. V.; MELAMED, R. FIGUEIREDO NETO, J. Fertilizantes agroindústria & sustentabilidade. CETEM, Rio de Janeiro, 2008.

MACHADO, L. C. P. Dialética da Agroecologia. 1 ed. São Paulo: Expressão Popular, 2014.

RIBEIRO, L.S. et al. Rochas silicáticas portadoras de potássio como fontes do nutriente para as plantas solo. **Revista Brasileira de Ciência do Solo**, n. 1, p. 891–897, 2010.

SOUZA, F. N. S. **O** potencial de agrominerais silicáticos como fonte de nutrientes na agricultura tropical. Tese (Doutorado) -- Programa de Pós Graduação em Geologia, Instituto de Geociências (IGD), Universidade Federal de Brasília (UnB). Brasília, DF. 2014. Disponível em:

https://repositorio.unb.br/bitstream/10482/18064/1/2014_FredNewtondaSilvaSouza.pdf>. Acesso em 20 mai. 2020.

THEODORO, S. H.; LEONARDOS, O.; ROCHA, E. L.; REGO, K. G. Experiências de uso de rochas silicáticas como fonte de nutrientes. **Revista Espaço e Geografia**, v. 9, n. 2, p. 263–292, 2006.

IV ENCONTRO INTERNACIONAL DE GESTÃO, DESENVOLVIMENTO E INOVAÇÃO

THEODORO, S. H.; LEONARDOS, O.; ROCHA, E. L.; REGO, K. G. A Importância de uma Rede Tecnológica de Rochagem para a Sustentabilidade em Países Tropicais. **Revista Brasileira de Geografia Física**, v. 06, p. 1390–1407, 2012.