Expoente de Avrami pela equação de JMAK para método não-isotérmico de análise térmica

DOI: 10.30609/JETI.2018-2.5566

Salmo M. Sidel¹, Elio Idalgo², Fábio A. Santos³*, Keizo Yukimitu⁴, João C. S. Moraes⁴

¹ UFT - Universidade Federal do Tocantins, Palmas, TO – Brasil.

² UNIP - Universidade Paulista, São José do Rio Preto, SP – Brasil.

³ UFGD - Universidade Federal da Grande Dourados, Dourados, MS – Brasil.

⁴ UNESP - Universidade Estadual Paulista, Ilha Solteira, SP – Brasil.

Resumo

Este trabalho discute a teoria geral para transformações de fases de Johnson-Melh-Avrami-Kolmogorov em processos envolvendo cristalização nãoisotérmica. Este modelo possibilita determinar como ocorre o mecanismo de formação dos núcleos e do crescimento de fases cristalinas durante o processo de cristalização. Para demonstrar a validade da teoria foi determinado o expoente de Avrami (n) do sistema vítreo LiO₂-TeO₂-WO₃ a partir de medidas não isotérmicas de DSC. Os resultados apresentados indicam processo de nucleação volumétrico com crescimento de cristais bidimensional ou tridimensional.

Key words: Expoente de Avrami, Processo de Nucleação, Crescimento de cristais, Análise Térmica.

1.- Introdução

O estudo dos mecanismos de nucleação e cinética de cristalização é essencial no desenvolvimento de novas tecnologias direcionadas principalmente às telecomunicações, por exemplo, fibras ópticas, amplificadores, entre outros [1,2]. No estudo das propriedades cinéticas, em particular a cristalização e nucleação de materiais vítreos, frequentemente são utilizadas técnicas de análise térmica, como por exemplo, a análise térmica diferencial (*differential thermal analysis* – DTA), que mede a diferença de temperatura entre a amostra e o material de referência, e a calorimetria exploratória diferencial (*differential scanning calorimetry* – DSC), baseada na medida da variação de energia entre a amostra e a referência [3,4].

Dois métodos de medidas podem ser empregados na obtenção dos parâmetros que regem o comportamento cinético da cristalização: o isotérmico e o não-isotérmico. Embora medidas isotérmicas apresentem, na maioria dos casos, resultados mais precisos, análises não-isotérmicas tornam-se mais vantajosas principalmente pelo menor tempo de medida num amplo intervalo de temperatura [5].

Kissinger [6,7], desenvolveu um modelo teórico para determinar parâmetros cinéticos envolvidos em processos de transformações de fases, o qual é frequentemente empregado no estudo da cristalização em vidros, apesar do mesmo ter sido desenvolvido somente para transformações homogêneas. No entanto, Henderson [8] descreveu um tratamento teórico para técnicas de análise térmica permitindo a aplicação do método de Kissinger em transformações heterogêneas do estado sólido, conforme descrito pela equação de Johnson-Mehl-Avrami [9,10]-Kolmogorov (JMAK) no caso isotérmico.

Neste contexto, a aplicação da teoria geral das transformações de fases de (JMAK) [11-14] foi avaliada em processos envolvendo cristalização não-isotérmica. O modelo de JMAK foi aplicado para determinação do expoente de Avrami (n) usando, para tanto, termogramas de DSC do sistema vítreo (20-x)LiO₂-80TeO₂-xWO₃.

2.- Teoria

O modelo proposto por JMAK parte do princípio de que um sistema passível de transformação de fase é composto por embriões da nova fase [7]. Tais embriões são arranjos aleatórios e transitórios de moléculas, inerentes do processo de preparo ou formados devido a tratamentos térmicos específicos, com composições semelhantes às moléculas da nova fase. Quando a mudança de fase se inicia e alguns desses embriões começam a crescer,

adquirindo estabilidade termodinâmica e não se dissolvendo, estes atingem um tamanho crítico transformando-se em núcleos. Nesse processo, o número de embriões vai decaindo com o passar do tempo, devido a dois mecanismos: embriões que se transformam em núcleos e embriões que são absorvidos por núcleos em crescimento. Desta forma, a cristalização ocorre devido às aglomerações de núcleos em crescimento que é descrita por processos isotérmicos ou não-isotérmicos.

2.1- Caso isotérmico

A teoria de JMAK estabelece que a cristalinidade desenvolvida por um material aquecido em regime isotérmico, por um tempo t, pode ser correlacionada com o tipo de nucleação e crescimento de cristais [15]. Assim, a equação de JMAK descreve transformações isotérmicas no estado sólido e tem a seguinte forma:

$$x = 1 - \exp[-(Kt)^n] \tag{1}$$

sendo *x* a fração de massa cristalizada após um tempo *t, n* o expoente de Avrami, o qual depende do mecanismo de crescimento e da dimensionalidade do cristal, e *K* a constante cinética definida como a taxa de reação efetiva [16]. A taxa de reação tem dependência com a temperatura que é descrita pela equação de Arrhenius:

$$K = A \exp\left(-\frac{E}{RT}\right)$$
(2)

sendo *E* a energia de ativação mínima necessária para início da formação dos cristais, *R* a constante universal dos gases, *T* a temperatura absoluta e *A* o fator de frequência.

Resultados de medidas isotérmicas podem ser analisados ao fazer duas vezes o logaritmo da Eq. (1), ou seja:

$$\ln(1-x) = -(Kt)^{n}$$
$$\ln[-\ln(1-x)] = n\ln K + n\ln t$$
(3)

Para uma dada temperatura, os valores de *n* e *K* são determinados a partir da reta ln[-ln(1-x)] *versus* ln(*t*). Por fim, a energia de ativação *E* e o fator de frequência

A são determinados pelo ajuste da reta de $\ln(K)$ versus 1/T quando se faz o logaritmo da Eq. (2), obtendo-se:

$$\ln K = \ln A - \frac{E}{RT} \tag{4}$$

O processo de cristalização ocorre quando a temperatura do sistema é mantida abaixo da temperatura na qual começam a crescer as fases cristalinas. A Fig. 1 ilustra a fração cristalizada x em função do tempo t, cuja forma da curva (sigmoidal "S") é característica da mudança de fase em sistemas super-resfriados. No início da formação de uma fase cristalina a taxa de crescimento dos cristais é lenta, conforme ilustrado na Fig. 1 até a região t_a . Isso é devido ao processo de incubação, em que pequenas partículas com a estrutura da nova fase começam a aparecer na fase antiga. Na segunda etapa do processo de cristalização, entre t_a e t_b , o número máximo de núcleos é atingido aumentando significativamente a taxa de transformação; a variação desta taxa é notada devido à mudança na inclinação da curva. A partir da região t_b ocorre a saturação do crescimento de cristais, devido a ocupação dos mesmos em quase todo volume do material, resultando assim na diminuição da taxa de transformação. Nesta parte do processo a taxa de transformação depende principalmente da "rigidez" das fases em relação ao movimento das partículas constituintes do meio em transformação.

Figura 1: Curva genérica para a fração cristalizada em função do tempo.

4

A fração cristalizada em função do tempo pode ser obtida dos picos de cristalização apresentados na curva de DSC. Os valores da cristalinidade [17] podem ser determinados pela seguinte equação:

$$x(t) = \frac{\int_{t_0}^t \left(\frac{dH}{dt}\right) dt}{\int_{t_0}^{t_\infty} \left(\frac{dH}{dt}\right) dt} = \frac{A_0}{A_\infty}$$
(5)

onde t_0 e t_∞ representam os tempos de início e término da cristalização, respectivamente, e t um tempo intermediário qualquer. Os termos A_0 e A_∞ são, respectivamente, a área parcial e total sob a curva de DSC. Determinando as áreas parciais e aumentando gradativamente até a área total, é possível obter-se a fração cristalizada fazendo a razão dos diferentes valores de áreas parciais pelo valor da área total, como ilustrado na Fig. 2.

Figura 2: Representação do cálculo de fração cristalizada a partir do pico de cristalização.

Conforme descrito, a determinação do expoente de Avrami depende da linearização da curva ilustrada na Fig. 1 (conforme definido pela Eq. (3)). No

entanto, o gráfico obtido possui três regiões distintas: a parte inicial (< t_a) e a final (> t_b) não apresentam a linearidade proposta pela teoria de JMAK, entretanto a região central é linear (entre $t_a e t_b$). No processo inicial da cristalização a área sob o pico endotérmico é muito pequena dificultando a determinação da fração cristalizada (x) e, como pequenas diferenças de x afetam diretamente nos valores de ln[-ln(1-x)], esses valores tendem a se desviar da linearidade. Na parte final, a saturação dos sítios de nucleação e o contato mútuo dos cristais, também levam ao desvio da linearidade para os valores de ln[-ln(1-x)]. Como isso não é previsto pela teoria de JMAK [9,10], somente a região central (entre $t_a e t_b$) é utilizada para o cálculo de n e K.

O valor do expoente de Avrami corresponde ao tipo de nucleação, homogênea ou heterogênea, e também à dimensionalidade de crescimento dos cristais [10]. A dimensionalidade da cristalização é definida com base no mecanismo de transformação relacionada com a taxa de nucleação do material. A equação de JMAK, que permite determinar o valor de *n*, foi desenvolvida para cristais de geometria esférica (tridimensional), planar (bidimensional, tipo disco) e cilíndrica (unidimensional, tipo agulha) [4,5]. Logo, o expoente de Avrami pode assumir os seguintes valores, para nucleação volumétrica: $n \ge 4$ indica crescimento tridimensional dos cristais; n=3, crescimento bidimensional; e n=2 crescimento unidimensional [18,19]. No entanto, para n=1 a nucleação ocorre na superfície [20].

2.2- Caso não-isotérmico

Na aplicação do método JMAK [7-9] para condições de cristalização nãoisotérmica assume-se que a taxa de aquecimento (ϕ) seja uma constante. Deste modo, a temperatura do sistema varia continuamente com o tempo a partir de uma temperatura inicial *T*₀ de acordo com a relação:

$$T = T_0 + \phi t \tag{6}$$

Por essa razão, torna-se necessário algumas considerações acerca da teoria de transformação de fases de JMAK para estudos em regimes não-isotérmicos.

Basicamente, deve-se considerar que a temperatura aumente com taxa constante (uma leitura típica em análise térmica de DSC ou DTA) e a taxa de reação *K* (conforme Eq. (2)) varie em função do tempo, devendo ser considerada em todo intervalo de leitura. Nessas condições [9,11,21], a Eq. (1) pode ser escrita da seguinte forma:

$$x = 1 - \exp\left[-\left(\int_{0}^{t} A \exp\left(-\frac{E}{RT}\right) dt\right)^{n}\right]$$
(7)

Assumindo que a Eq. (7) pode ser escrita como:

$$x = 1 - \exp(-I^{n})$$

$$(1 - x) = \exp(-I^{n})$$
(8)

onde, $I = \int_0^t A \exp\left(-\frac{E}{R(T_0 + \phi t)}\right) dt$. Assim, a derivada da Eq.(8) é igual a:

$$\frac{dx}{dt} = nKI^{n-1}(1-x) \tag{9}$$

A taxa máxima de cristalização é alcançada na temperatura de pico de cristalização (*T_P*), ou seja, no ponto de inflexão da curva de DSC $\left[\frac{d}{dt}\left(\frac{dx}{dt}\right)\right] = 0$. Desta forma, aplicando a derivada de segunda ordem na Eq. (9), obtêm-se:

$$\frac{d}{dt}\left(\frac{dx}{dt}\right) = \frac{d}{dt}\left[nKI^{n-1}(1-x)\right] = 0$$
(10)

$$\left[nI^{n-1}(1-x)\frac{dK}{dt}\right] + \left[nK(1-x)\frac{dI^{n-1}}{dt}\right] + \left[nKI^{n-1}\frac{d}{dt}(1-x)\right] = 0$$
(11)

Resolvendo as derivadas da Eq. (11) obtêm-se:

$$nI^{n-1}(1-x)K\frac{E}{RT^{2}}\frac{dT}{dt} + nK(1-x)(n-1)I^{n-2}K - nKI^{n-1}\frac{dx}{dt} = 0$$
(12)

De acordo com a Eq. (9), pode-se reescrever a Eq.(12) como:

$$\frac{dx}{dt}\frac{E}{RT^{2}}\frac{dT}{dt} + \frac{dx}{dt}(n-1)I^{-1}K - nKI^{n-1}\frac{dx}{dt} = 0$$

$$\frac{dx}{dt}\left[\frac{E}{RT^{2}}\frac{dT}{dt} + (n-1)I^{-1}K - nKI^{n-1}\right] = 0$$
(13)

Sabendo que a taxa de aquecimento de um processo não-isotérmico é $\phi = \frac{dT}{dt}$, e utilizando T_P para quando essa taxa é máxima, a Eq. (13) torna-se:

$$nK_{p}I_{p}^{n-1} = \frac{E}{RT_{p}^{2}}\phi + (n-1)I_{p}^{-1}K_{p}$$

$$nK_{p}I_{p}^{n} = \frac{E\phi I_{p}}{RT_{p}^{2}} + (n-1)K_{p}$$
(14)

onde o subscrito "P" denota a magnitude de valores na taxa máxima de cristalização.

A integral *I* não pode ser calculada de forma trivial. É necessário fazer uma troca de variáveis que permita representar a integral por uma série alternada [11]. Assim, considerando $y = \frac{E}{RT}$, a integral *I* pode ser determinada pela seguinte série alternada:

$$I = -\exp(-y) y^{-2} \sum_{i=0}^{\infty} \left[\frac{(-1)^{i} (i+1)!}{y^{i}} \right]$$
(15)

Utilizando este tipo de série alternada, e tendo em mente que a reação de cristalização $y = \frac{E}{RT} \gg 1$ (normalmente $\frac{E}{RT} \ge 25$, é possível utilizar apenas os dois primeiros termos desta série, assim:

$$I = -\exp(-y) y^{-2} + \exp(-y) y^{-2} \frac{2}{y}$$
$$I = -\exp\left(-\frac{E}{RT}\right) \left(\frac{RT}{E}\right)^2 + \exp\left(-\frac{E}{RT}\right) \left(\frac{RT}{E}\right)^2 \frac{2RT}{E}$$
(16)

Fazendo $\frac{K}{\phi} = -\exp\left(-\frac{E}{RT}\right)\frac{R}{E}$ e rearranjando a Eq. (16) obtêm-se:

$$I = \frac{RT^2K}{\phi E} \left(1 - \frac{2RT}{E} \right); \tag{17}$$

 $y_0 = \frac{E}{RT_0}$ tende ao infinito quando assume-se que $T_0 << T$. Assim, isolando K na Eq. (17) e substituindo na Eq. (14) para taxa máxima de cristalização, têm-se:

$$I_{P} = \left(1 - \frac{2RT}{nE}\right)^{\frac{1}{n}}$$
(18)

Igualando as Eqs. (17) e (18) e, usando a equação de Arrhenius, Eq. (2), temos:

$$\frac{RT_p^2}{\phi E} K_0 \exp\left(\frac{-E}{RT_p}\right) = \left(1 - \frac{2RT_p}{nE}\right)^{\frac{1}{n}} \left(1 - \frac{2RT_p}{E}\right)^{-1}$$
(19)

Aplicando o logaritmo, a Eq. (19) fica:

$$\ln\left(\frac{T_p^2}{\phi}\right) + \ln\left(\frac{K_0R}{E}\right) - \frac{E}{RT_p} = \frac{1}{n}\ln\left(1 - \frac{2RT_p}{nE}\right) - \ln\left(1 - \frac{2RT_p}{E}\right)$$
(20)

Expandindo a função ln(1+x) com $x=-2RT_P/nE$, numa série de potência obtêm-se:

$$\ln(1+x) = \sum_{i=0}^{\infty} \frac{(-1)^i}{i+1} x^{i+1}$$
(21)

Neste caso, vamos considerar somente o primeiro termo da série, ou seja:

$$\ln\left(1+x\right) \approx x$$

$$\ln(1+x) \approx \left(-\frac{2RT_P}{nE}\right) \tag{22}$$

Substituindo a Eq. (22) na Eq. (20) temos:

$$\ln\left(\frac{T_P^2}{\phi}\right) + \ln\left(\frac{K_0R}{E}\right) - \frac{E}{RT_P} \approx \frac{2RT_P}{E} \left(1 - \frac{1}{n^2}\right)$$
(23)

Esta equação se reduz facilmente à expressão de Kissinger [1,2] quando *n*=1 e, conforme citado, corresponde ao caso de reações homogêneas [11]. Além disso,

para a maioria das reações de cristalização o lado direito da Eq. (23) pode ser desprezado quando os termos são comparados individualmente com os termos do lado esquerdo para taxas de aquecimento comuns (\leq 100 Kmin-1). Portanto, conforme citado por Henderson [3], o método de Kissinger é apropriado tanto para análises de reações homogêneas quanto para análises de reações heterogêneas de acordo com a equação de JMAK em experimento isotérmicos [11].

Finalmente, o termo *2RT/E* na Eq. (17) é desprezível quando comparado à unidade, pois, verifica-se experimentalmente que *E/RT>>1* (usualmente E/RT≥25) [1,11]. Portanto, a Eq. (17) para a taxa máxima de cristalização pode ser reescrita como:

$$I_P = \frac{RT_P^2 K_P}{\phi E} \tag{24}$$

Substituindo o valor de IP da Eq. (24) na Eq. (14), resulta:

$$nK_{P}I_{P}^{\ n} = \frac{E\phi}{RT_{P}^{\ 2}}\frac{RT_{P}^{\ 2}K_{P}}{\phi E} + (n-1)K_{P}$$

$$I_{P} = 1$$
(25)

Deste modo, a Eq. (9) é reduzida a:

$$\left(\frac{dx}{dt}\right)_{p} = nK_{p}(1-x)_{p}$$

$$n = \left(\frac{dx}{dt}\right)_{p} \frac{1}{K_{p}(1-x)_{p}}$$
(26)

De acordo com a Eq. (24), $K_P = \frac{\phi E}{RT^2} I_P \operatorname{com} I_P = 1$ e, considerando que x_P é 0,63 [22], a Eq. (26) pode ser reescrita como:

$$n = \left(\frac{dx}{dt}\right)_{p} \frac{RT_{p}^{2}}{\phi E \left(1 - 0, 63\right)_{p}}$$
$$n = \left(\frac{dx}{dt}\right)_{p} \frac{RT_{p}^{2}}{0,37\phi E}$$
(27)

JETI, v.1, n.2, 2018

Esta equação possibilita calcular o expoente de Avrami (*n*) a partir da intensidade máxima obtida para derivada da fração cristalizada $\left(\frac{dx}{dt}\right)_{p}$.

3.- Aplicação do modelo em dados não-isotérmicos de DSC para vidros teluritos

O modelo de JMAK foi aplicado para três amostras com composições molares: 80TeO₂-20Li₂O, 80TeO₂-15Li₂O-5WO₃ e 80TeO₂-10Li₂O-10WO₃, denominadas TL, TLW5 e TLW10, respectivamente.

Análises prévias de difração de raios-X (DRX) indicaram a formação das fases cristalinas α -TeO₂, γ -TeO₂ e α -Li₂Te₂O₅ no vidro TL [23-25], e somente das fases α -TeO₂, γ -TeO₂ nos vidros TLW5 e TLW10, como destacado em [26]. Assim, os picos de cristalização (picos endotérmicos obtidos a partir das medidas de DSC) associados a cada fase cristalina observada no DRX foram separados usando o método de mínimos quadrados usando funções Gaussianas. Logo, foram obtidos os valores das temperaturas de pico (*T_P*) associados a cada fase, os quais são apresentados na Tabela 1.

Taxa de - aquecimento	Temperatura de pico de cristalização (K)								
	Vidro TL			Vidro	TLW5	Vidro TLW10			
∮ (Kmin ⁻¹)	T_{P1}	T_{P2}	T_{P3}	T_{P1}	T_{P2}	T_{P1}	T_{P2}		
2,5	604	610	614	636	638	657	663		
5,0	610	617	620	645	647	665	671		
7,5	614	621	624	651	653	671	676		
10,0	619	625	629	655	657	675	680		
12,5	622	628	631	658	660	678	682		

Tabela 1: Temperaturas de pico de cristalização dos vidros TL, TLW5 e TLW10 para medidas realizadas com tamanho de partículas de 45-63 μm em diferentes taxas de aquecimento.

A partir dos valores de T_P , obtêm-se os valores das energias de ativação (*E*) pelo método de Kissinger [6,7], $\ln (T_P^2/\phi) = E/RT_P + cte$, por meio da regressão linear de $\ln (T_P^2/\phi)$ versus $1/T_P$. E também, fazendo o gráfico da fração cristalizada (x) pelo tempo (t) (ou ainda em função da temperatura), determina-se a partir da primeira derivada da curva o valor da taxa de cristalização máxima (dx/dt), associado aos picos de cristalização para cada taxa de aquecimento. Portanto, conhecendo *E*, (dx/dt), a constante universal dos gases ($R \approx 8,314$ JK⁻¹mol⁻¹), a temperatura de pico (T_P) e a taxa de aquecimento (ϕ), Tabela 1, pode-se determinar o expoente de Avrami (n) a partir da Eq. (27). Os valores de (dx/dt), *E* e n estão dispostos na Tabela 2.

uncremes taxas de aquéenmento (ψ) .											
Vidro	ф	dx_1/dt	dx_2/dt	dx3/dt	E_{I}	E_2	E_{β}		21	на	Иа
	Kmin ⁻¹	10 ⁻² s ⁻¹	10 ⁻² s ⁻¹	10 ⁻² s ⁻¹	kJmol ⁻¹	kJmol ⁻¹	kJmol-1		<i>n</i> 1	<i>nt</i> 2	<i>n</i> 3
TL	2,5	0,4325	0,5873	0,6119	265±9	276±5	285±8		3,2	4,3	4,4
	5,0	0,6977	0,8996	1,1802					2,6	3,3	4,3
	7,5	0,9821	1,6876	2,2552					2,5	4,2	5,5
	10,0	1,8227	1,5481	2,5104					3,6	3,0	4,7
	12,5	1,4835	2,6046	5,1322					2,3	4,0	7,7
								n	2,8	3,8	5,3
TLW5	2,5	0,5020	0,3991	-	242±1	243±1	_		4,5	3,6	-
	5,0	0,4540	0,7170	-					2,1	3,3	-
	7,5	0,6894	1,0336	-					2,2	3,3	-
	10,0	1,2235	1,1886	-					2,9	2,8	-
	12,5	1,1504	1,6990	-					2,2	3,3	-
								n	2,8	3,3	-
TLW10	2,5	0,3572	0,5473	-	269 ±3	302±3	_		3,1	4,3	-
	5,0	0,6792	1,1094	-					3,0	4,6	_
	7,5	0,9434	1,7203	-					2,8	4,7	_
	10,0	1,2325	1,6780	-					2,8	3,5	-
	12,5	1,2646	1,7089	-					2,3	2,8	-
								n	2,8	4,0	-

Tabela 2: Taxa de cristalização máxima (dx/dt), energia de ativação (E) e expoente de Avrami (*n*) para os picos de cristalização dos vidros TL, TLW5 e TLW10 submetidos a diferentes taxas de aquecimento (ϕ).

Os valores médios do expoente de Avrami (\overline{n}) indicam que a nucleação e o crescimento de cristais podem ocorrer por mais de um mecanismo. De acordo com os resultados os vidros apresentaram nucleação volumétrica com a dimensionalidade do crescimento de cristais sendo: bidimensional ($\overline{n}_1 \approx 3$) seguido de um crescimento tridimensional ($\overline{n}_2 \approx 4 \text{ e } \overline{n}_3 \ge 4$) para o vidro TL; crescimento bidimensional ($\overline{n}_1 \in \overline{n}_2 \approx 3$) para o vidro TLW5; e crescimento bidimensional ($\overline{n}_1 \approx 3$) seguido de crescimento tridimensional ($\overline{n}_2 = 4$) para a amostra TLW10.

4.- Conclusão

Conforme discutido, o modelo de JMAK para determinar o expoente de Avrami (*n*) foi desenvolvido inicialmente para análises de casos isotérmicos. No entanto, verificou-se que a partir de certas considerações este padrão pode ser aplicável em análises não-isotérmicas. Neste trabalho foi demonstrado e discutido detalhadamente os métodos matemáticos aplicados no desenvolvimento da teoria de JMAK para condições não-isotérmicas de medidas, e também, a aplicação do método na determinação dos valores médios do expoente de Avrami (\bar{n}). Estes valores indicam que a nucleação é volumétrica podendo ter crescimento bidimensional ou tridimensional. Portanto, pode-se dizer que o método de JMAK é muito útil no estudo da nucleação e crescimento de cristais em vidros.

5.- Bibliografia

[1] E. IDALGO, E.B. ARAÚJO, K. YUKIMITU, J.C.S. MORAES, V.C.S. REYNOSO, C.L. CARVALHO, Materials Science and Engineering A, 434, 13 (2006).

[2] M. BARRICO, L. BATTEZZATI, M. BRAGLIA, G. COCITO, M. GAVA, J. KRAUS, S. MOSSO, Journal of Non-Crystalline Solids, 213-214, 79 (1997).

[3] M. REZVANI, B.E. YEKTA, V.K. MARGHUSSIAN, Journal of the European Ceramic Society, 25, 1525 (2005).

[4] P.L. LOPEZ-ALEMANY, J. VAZQUEZ, P. VILLARES, R. JIMENEZ-GARAY, Journal of Materials Processing Technology, 143-144, 512 (2003).

[5] K. CHENG, Journal of Materials Science, 36, 1043 (2001).

[6] H.E. Kissinger, Journal of Research of the National Bureau of Standards 57, 217 (1956).

[7] H.E. Kissinger, Journal of Research of the National Bureau of Standards 29, 1702 (1957).

[8] D.W. Henderson, Journal of Non-Crystalline Solids 30, 301 (1979).

[9] M. Avrami, Journal of Chemical Physics 7, 1103 (1939).

[10] M. Avrami, Journal of Chemical Physics 8, 212 (1940).

[11] V.M. Fokin, E.D. Zanotto, N.S. Yuritsyn, J.W.P. Schmelzer, Journal of Non-Crystalline Solids 352, 2681 (2006).

[12] S.W. Lee, K.B. Shim, K.H. Auh, P. Knott, Journal of Non-Crystalline Solids 248, 127 (1999).

[13] A.F. Kozmidis-Petrovic, G.R. Strbac, D.D. Strbac, Journal of Non-Crystalline Solids 353, 2014 (2007).

[14] K. Cheng, Materials Science and Engineering B: Solid State Materials for Advanced Technology 60, 194 (1999).

[15] L.M. Guimarães, E.D. Zanotto, Química Nova 26, 1 (2003).

[16] J. Vázquez, P.L. Lópes-Alemany, R. Jiménez-Garay, Journal of Physics and Chemistry of Solids 61, 493 (2000).

[17] M.C. Kuo, J.C. Huang, M. Chen, Materials Chemistry and Physics 99, 258 (2006).

[18] K. Matusita, T. Komatsu, R. Yokota, Journal of Materials Science 19, 291 (1984).

[19] Y. Long, R.A. Shanks, Z.H. Stachurski, Progress in Polymer Science 20, 651 (1995).

[20] N. Ziani, M. Belhadji, L. Heireche, Z. Bouchaour, M. Belbachir, Physica B 358, 132 (2005).

[21] E.R. Shaaban, Physica B 373, 211 (2006).

[22] Y.Q. Gao, W. Wang, Journal Non-Crystalline Solids 81, 129 (1986).

[23] E. Idalgo, E.B. Araújo, Journal of Physics D: Applied Physics 40, 3494 (2007).

[24] E. Idalgo, E.B. Araújo, Cerâmica 53, 325 (2007).

[25] E.B. Araújo, E. Idalgo, A.P.A. Moraes, A.G. Souza Filho, J. Mendes Filho, Materials Research Bulletin 44, 1596 (2009).

[26] S.M. SIDEL, W.A. CAPANEMA, E.B. ARAUJO, J.C.S. MORAES, K. YUKIMITU, Journal of Solid State Chemistry 184, 1216 (2011).