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The theoretical description for the chlorantraniliprole electrochemical determination, assisted by the hybrid 
composite of squaraine dye with CuS nanoparticles has been described. The correspondent reaction mechanism 
has been proposed, and the correspondent mathematical model has been developed and analyzed by means of 
linear stability theory and bifurcation analysis. It has been shown that the chlorantraniprole electrochemical 
anodical determination on high potential may be efficiently provided by cupper sulfide nanoparticles, stabilized by 
the squaraine dye. On the other hand, the oscillatory and monotonic instability is also possible, being caused by 
DEL influences of the electrochemical stage. 
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1. Introduction  

Chlorantraniliprole (Rynaxypyr, Fig. 1) is a selective 
insecticide of the ryanoid class [1-4]. It has been developed by 
DuPont, in order to control a wide range of pests including 
Lepidoptera, Coleoptera, Diptera and Isoptera.  
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Fig. 1. Chemical structure of chlorantraniliprole. 

 
In Uzbekistan, chlorantraniliprole is used as the active 

substance of zaragen pesticide [5-10]. It is characterized by a 
high level toxicity, including the cardiovascular symptoms like 
sinusoidal bradicardia, arrhythmia and ventricular 
extrasystolia. Moreover, this substance may be highly toxic to 
honey bees and aquatic organisms, which makes it an 
environmentally dangerous chemical.  Thus, the development 
of an efficient and rapid method for its determination is really 
actual [11-14], and the electrochemical methods could give it 
a good service.  

For now, no works about the chlorantraniliprole 
electrochemical determination have been published. 
Nevertheless, its analogous molecules like carbendazime, 
isoproturon, paraquat and diquat have been successfully 
determined by electrochemical way [15-21]. Also, 
chlorantraniliprole molecule contains the electroactive 
groups, reason why it is considered electrochemically active.  

Both anodic and cathodic electrochemical determination 
may be compatible for the chlorantraniliprole molecule. 
Although cathodic determination is preferable, the anodic 
oxidation is also possible and may be efficient. Either way, the 
use of bear electrodes for electroanalysis becomes inefficient, 
due to the physical adsorption, overvoltage and electrode 
shape effects, enhancing the energy loss. Therefore, in order 
to enhance the efficacy of electroanalytical process, the 
electrode is modified [22-30]. The chemically modified 
electrodes diminish the energy losses and augment the 
catalytic activity and affinity between the sensor and the 
analyte.          

In [22], an interesting electroanalytical process has been 
developed for inositol, using the copper sulfide nanoparticles. 
The process involved a highly energetic state of trivalent 
copper form, which may be useful for chlorantraniliprol 
electrochemical oxidation. In order to stabilize and mediate 
the electron transfer, the CuS nanoparticles are deposited over 

a squaraine dye [23-28] or conducting polymer matrix [29-30]. 
It makes more efficient the electrochemical signal 
interpretation, as it becomes clearer. 

Nevertheless, the use of novel electrode modifiers with 
novel analytes may be impeded by: 

- the indecision concerning the exact 
mechanism of electrochemical reaction; 

- necessity of determination of the parameter 
region, correspondent to the most efficient 
active substance and mediating action;   

- the presence of electrochemical instabilities, 
yet described for  the CoO(OH) synthesis [31-
32]. 

The mentioned problems may only be solved by means of 
an analysis of a mathematical model, capable to describe 
adequately the chlorantraniliprole electrochemical 
determination. Moreover, it is also capable compare the 
behavior of this system with that for the similar ones without 
any experimental essay. 

   So, the goal of this work is the mechanistic theoretic 
analysis of the chlorantraniliprole electrochemical 
determination, assisted by Squaraine dye – nano CuS 
composite. In order to achieve it, we realize the specific goals:  

- suggestion of the mechanism of the reaction 
consequence, leading to the appearance of 
analytical signal; 

- development of the balance equation 
mathematical model, correspondent to the 
electroanalytical system;  

- analysis and interpretation of the model in 
terms of the electroanalytical use of the 
system; 

- the seek for the possibility of electrochemical 
instabilities and for the factor, causing them; 

- the comparison of the mentioned system´s 
behavior with the similar ones [33 – 35]. 

In the work [34], the electrochemical determination of 
chlorantraniliprole over a squaraine dye composite with silver 
(I, III) oxide has been given, and the conclusion about its 
efficiency in electroanalytical process has been made. As for 
copper sulfide, its oxidation yields trivalent copper 
sulfohydroxide, somehow more aggressive oxidant, capable 
to add one more oxidation scenario, compared to the work 
[34]. The presence of three oxidation scenarios instead of two 
makes the electrochemical instabilities more probable, as in 
similar processes [33-35] and this will be shown below. 

2. Material and Methods  

The composite may be yielded by copper sulfide chemical 
or electrochemical deposition on a squaraine dye. The 
nanoparticles’ structure, arrangement and shape will depend 
on a dye chosen and on the synthesis conditions [22].    

As chlorantraniliprole contains two pyridinic nitrogen 
atoms, strong oxidants act on them, yielding N-oxides. As the 
trivalent copper is highly energetic, it is capable to phenolize 
the benzolic ring with its subsequent transformation into a 
quinonic moiety (1-2):  
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CuS + OH- - e-CuS(OH)                                           (1) 
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    (2) 
 
The N-oxidation of pyridinic ring is also possible, as a 

parallel scenario either for the pyridinic derivative, or for its 
quinonized form. Therefore, in order to describe the behavior 
of the electrochemical determination of chlorantraniliprole on 
the CuS-Squaraine dye modified electrode, we introduce three 
variables:  

 
c – chlorantraniliprole concentration in the pre-surface 

layer;  
q – quinonicform concentration in the pre-surface layer;  
s – copper sulfide surface coverage degree.  
To simplify the modeling, we suppose that the reactor is 

intensively stirred, so we can neglect the convection flow. Also 
we assume that the background electrolyte is in excess, so we 
can neglect the migration flow. The diffusion layer is 
supposed to be of a constant thickness, equal to δ, and the 
concentration profile in it is supposed to be linear. Also, we 
assume that, in the synthesis conditions, the quinonic low-
molecular oxidation product, while formed, diffuses off the 
pre-surface layer. The mathematical model will be thereby 
analyzed by the method, mentioned in [36].  

It is possible to show that the system´s behavior will be 
described by balance equation set as following (3):  
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Here, 𝛥𝛥 is the diffusion coefficient, S is the maximal CuS 

matrix surface coverage degree, and the parameters r are the 

correspondent reaction rates, which may be described as (4-
7):  

 
𝑟𝑟𝑞𝑞 = 𝑘𝑘𝑞𝑞𝑐𝑐(1 − 𝑠𝑠)2                                          (4) 

 
𝑟𝑟𝑁𝑁1 = 𝑘𝑘𝑁𝑁1𝑐𝑐(1 − 𝑠𝑠)2                                       (5) 

 
𝑟𝑟𝑁𝑁2 = 𝑘𝑘𝑁𝑁2𝑞𝑞(1 − 𝑠𝑠)2                                        (6) 

 

𝑟𝑟1 = 𝑘𝑘1𝑠𝑠 exp �𝐹𝐹𝜑𝜑0
𝑅𝑅𝑅𝑅
�                                         (7) 

 
in which the parameters k are rate constants of the reactions, 
F is the Faraday number, 𝜑𝜑0  is the potential slope in DEL, 
relative to the zero-charge potential, R is the universal gas 
constant, and T is the absolute temperature. 

In acidic media, the pyridinic nitrogen atoms would be 
protonated, causing strong impact on double electric layer 
(DEL). But in neutral and basic media, this impact won’t be 
realized. Therefore, the behavior of this system will be more 
stable and less dynamic, as shown in the next section. 

3. Results and Discussion 

In order to investigate theoretically the electroanalytical 
determination of chlorantraniliprole, assisted by squaraine 
dye – CuS composite, we analyze the equation-set (3) and 
algebraic relations (4-7) by means of linear stability theory. 
The steady-state Jacobian matrix members will be described 
as:  

 
 

�
𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

�                                  (8) 

 
in which: 
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𝑎𝑎12 = 0      (10) 

𝑎𝑎13 = 2
𝛿𝛿
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 Orbital: Electron. J. Chem. 2021, 13(3), 200-204 
 
 

Published by Federal University of Mato Grosso do Sul | www.orbital.ufms.br                                                                                 203 

𝑎𝑎21 = 2
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As in the similar systems [33-35], the oscillatory behavior 

is possible in this system. Nevertheless, as on the chemical 
stages no ionic compounds formation, destruction and 
transformation occurs (in basic media), the unique factor 
responsible for the oscillatory behavior is the influence of the 
electrochemical stage on double electric layer capacitance 
and conductivity. It is described by the positivity of the 
element 𝑗𝑗𝑘𝑘1𝑠𝑠 exp �𝐹𝐹𝜑𝜑0

𝑅𝑅𝑅𝑅
� > 0 if j<0. The oscillations are 

expected to be frequent and of small amplitude.  
In order to investigate the steady-state stability, we apply 

the Routh-Hurwitz criterion to the equation-set (3). Avoiding 
cumbersome expressions, we introduce new variables and 
rewrite the determinant as (18): 

 

4
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𝛯𝛯 + 𝛬𝛬 𝛵𝛵 −𝛴𝛴 − 𝛲𝛲 − 𝛺𝛺

�                 (18) 

 
Opening the brackets and applying the Det J<0 

requirement, salient from the criterion, we obtain the steady-
state stability requirement, exposed as (19): 

 
𝛴𝛴(2𝛯𝛯 + 𝛬𝛬) − (𝜅𝜅 + 𝛯𝛯 + 𝛬𝛬)(2𝛴𝛴 + 𝛺𝛺) < 0              (19) 

 
As the second expression in the majority of parameter 

values, has more negative values than the first, the left part of 
the inequation (19) will be easily shifted to more negative 
values. Thus, this inequation describes an electroanalytically 
efficient diffusion and kinetically controlled electroanalytical 
system.  

As in this case, there are no reactions, capable to 
compromise the analyte and modifier stability, the steady-
state stability is correspondent to the linear dependence 
between the chlorantraniliprole concentration and the current 
(in this system, we describe the amperometric sensor), which 
is therefore observed in vast measure of the concentrations.  

The detection limit is relatively low (in micro or nanomolar 
range, depending on the electrode shape and analysis 
conditions) and it is correspondent to the margin between the 
stable steady-states and unstable states. This margin is 
defined by the monotonic instability, described by the 
condition of Det J = 0, or:  

 
𝛴𝛴(2𝛯𝛯 + 𝛬𝛬) − (𝜅𝜅 + 𝛯𝛯 + 𝛬𝛬)(2𝛴𝛴 + 𝛺𝛺) = 0              (20) 

 
If the squaraine dye is substituted by a conducting polymer 

without pyridinic nitrogen atoms or other complex forming 
groups, the model will be the same. Yet if the conducting 
polymer contains them, the double electric layer and surface 
conductivity will be more effective on the chemical stage, thus 

the model will be transformed as analogous to [33-35] 

4. Conclusions  

From the analysis of the system with the 
chlorantraniliprole electrochemical determination as an 
anodic process, assisted by CuS – Squaraine Dye composite 
it is possible to conclude that: 

- The system’s behavior is less dynamic, while compared 
to the similar systems in acid media, due to the less intense 
influence of the process of double electric layer conductivity 
and capacitance. 

- The electroanalytical process tends to be either 
kinetically or diffusion controlled with the easy realization of 
linear dependence between the concentration and the current.  

- The oscillatory behavior tends to have less probability to 
be realized, compared with the acid media, due to the 
impossibility of DEL influence of the electrochemical stage. 
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