
Orbital: Electron. J. Chem. 2021, 13(2), 108-114 
 

 

a Department of Chemistry, Universidade Estadual do Centro–Oeste, Guarapuava, PR, 85040-167, Brazil. b LIEC - DQ- Universidade Federal 
de São Carlos, São Carlos, SP, 13565-905, Brazil. *Corresponding author. E-mail: asmoraes92@gmail.com   

 
 

Published by Federal University of Mato Grosso do Sul | www.orbital.ufms.br                                                                       108 

 
           

  
 

 

 

 

 

Full paper | http://dx.doi.org/10.17807/orbital.v13i2.1453    

Simulation of the Impedance of the Electrical Double 
Layer and Evaluation of the Surface Excess 
Concentration by Finite Element Analysis  
 

Alex Silva de Moraes  a*, Evaldo Batista Carneiro Neto  b, and Mauro Chierici Lopes  a 
 

Understanding the structure of the electrical double layer (EDL) is of great importance for many different 
technological and scientific applications, but some information is not always accessible from experiments. In this 
sense, the aim of this study was to implement a simple one-dimensional computational model for the study of the 
EDL and solve by the finite element method. The details of the validation of the model are presented and frequency 
domain analysis is performed in order to obtain impedance information. From the impedance study, it was 
possible to obtain the total capacitance and confirm its dependence on applied potential. Moreover, calculations 
of the Gibbs excess surface concentration were carried out for different values of bulk concentration. Our results 
are in agreement with analytical predictions, showing that the model is suitable for the study of the EDL structure. 
 

Graphical abstract 

                   

1. Introduction 

In the absence of irreversible processes, particles in a bulk 
electrolyte experience isotropic forces, so that there is no net 
force acting upon them and therefore no alignment of their 
dipole momentum in any specific direction. However, the 
presence of another phase, such as the electrode, creates an 
anisotropic distribution of forces near the surface, changing 

the structure of this interphasial region, creating a new 
structure known as electrical double layer (EDL) [1]. 

The first model to describe the EDL structure is Helmholtz 
model [1, 2]. In this model, ions in solution are assumed to be 
distributed over a two-dimensional layer with charge q, while 
the electrode has a charge -q. The double layer structure is 
then treated as a parallel plate capacitor. A few decades later, 
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Gouy and Chapman developed another model, known as 
Gouy-Chapman model [1, 2]. In this model, the ions are treated 
as point charges and are distributed through the solution in a 
region called diffuse layer. The ion distribution is assumed to 
follow Boltzmann distribution and the potential is solved 
through Poisson equation and the combined solution is called 
Poisson-Boltzmann equation [2]. However, at steady state this 
equation is equivalent to the Poisson-Nernst-Planck (PNP) 
equation, as will be shown in section 1.1, which is obtained by 
combining Poisson equation for the electric potential and the 
Nernst-Planck equation for ion transport in solution. 

Another model for the EDL structure came later and is 
known as Stern model, which is a combination of Helmholtz 
and Gouy-Chapman models [1, 2]. The structure of the EDL as 
described by Stern is shown in Figure 1, where Ch and Cd are 
the Helmholtz and diffuse capacitances, calculated from 
Helmholtz and Gouy-Chapman models, respectively; Ct is the 
total capacitance, obtained by the series combination of Ch 
and Cd. The lower part of the figure shows the potential drop 
in the electrolyte phase due to the ion distribution in the EDL. 

 

 
Fig. 1. Electrical double layer structure [3]. 

 
In laboratory experiments it is usual to add sufficient 

quantity of supporting electrolyte to confine the EDL to a thin 
layer much smaller than the diffusion layer and then ignore its 
structure. There are practical situations, however, where the 
double layer structure plays a major role such as in EDL 
supercapacitors [4-6] and in interfaces between two 
immiscible electrolyte solutions (ITIES) [7-11]. The study and 
design of these devices rely on a suitable model of the double 
layer structure and the resultant electrical properties. In this 
paper we present a simple model and its computational 
simulation using finite element analysis. The model is 
restricted to a one-dimensional domain and dilute solution 
approximation to keep the analytical solutions valid and allow 
the model validation. Furthermore, a frequency domain 
analysis is implemented in order to simulate impedance 

measurements, which are important to compare with 
experimental results.  This model paves the way to more 
sophisticated approaches including geometric complications, 
such as porosity, and thermodynamic non-idealities, which 
happen in concentrated solutions.  A few previous studies 
have been reported but without model validation and 
impedance calculations [12, 13]. 

 
1.1 Derivation of the PNP equation: 

The Nernst-Planck equation (without the convection term) 
is given by: 

𝑱𝑱𝒊𝒊 = 𝐷𝐷𝑖𝑖  
dci
dx + 𝑧𝑧𝑖𝑖  𝐹𝐹𝑐𝑐𝑖𝑖  𝑢𝑢𝑖𝑖

dϕ
dx

     (1) 

where 𝑱𝑱𝒊𝒊 is the flux of species i, 𝐷𝐷𝑖𝑖 is the diffusion coefficient, 
𝑐𝑐𝑖𝑖  the concentration, 𝑧𝑧𝑖𝑖𝐹𝐹 the charge, 𝑢𝑢𝑖𝑖 the mobility and 𝜙𝜙 the 
electric potential. 

Assuming stationary state, 𝑱𝑱𝒊𝒊 = 0, so equation (1) 
becomes [14]: 

𝐷𝐷𝑖𝑖  
dci
dx  + 𝑧𝑧𝑖𝑖  𝐹𝐹𝑐𝑐𝑖𝑖  𝑢𝑢𝑖𝑖  

dϕ
dx  = 0     (2) 

Using the variable change  

𝑐𝑐𝑖𝑖 = 𝑞𝑞1𝑞𝑞2 (3) 

where 𝑞𝑞1 and 𝑞𝑞2 are arbitrary functions of space coordinates 
(𝑥𝑥 in this case), equation (2) becomes: 

𝐷𝐷𝑖𝑖𝑞𝑞2  
dq1
dx + 𝑞𝑞1 �𝐷𝐷𝑖𝑖

dq2
dx  +  𝑧𝑧𝑖𝑖𝐹𝐹𝑞𝑞2 𝑢𝑢𝑖𝑖  

dϕ
dx  � = 0    (4) 

Since the choice of the functions 𝑞𝑞1 and 𝑞𝑞2 are arbitrary, it 
is possible to choose a 𝑞𝑞2 that satisfies: 

𝐷𝐷𝑖𝑖
dq2
dx  + 𝑧𝑧𝑖𝑖𝐹𝐹𝑞𝑞2 𝑢𝑢𝑖𝑖  

dϕ
dx  =  0  

which gives 

𝑞𝑞2 = 𝑒𝑒𝑥𝑥𝑒𝑒 �
𝑧𝑧𝑖𝑖𝐹𝐹
𝑅𝑅𝑅𝑅 𝜙𝜙� (5) 

where the Nernst-Einstein relation (𝑢𝑢𝑖𝑖 = 𝐷𝐷𝑖𝑖/𝑅𝑅𝑅𝑅) was used. 
Substituting this 𝑞𝑞2 in equation (4), we obtain: 

𝐷𝐷𝑖𝑖𝑒𝑒𝑥𝑥𝑒𝑒 �
𝑧𝑧𝑖𝑖𝐹𝐹
𝑅𝑅𝑅𝑅

𝜙𝜙�  
dq1
dx  = 0 (6) 

For equation (6) to be valid, 𝑞𝑞1 must be a constant. 
Furthermore, when 𝑥𝑥 → ∞, 𝜙𝜙 → 0 and 𝑐𝑐𝑖𝑖 → 𝑐𝑐𝑖𝑖∗, where 𝑐𝑐𝑖𝑖∗ is the 
bulk concentration of species i. With this boundary condition 
and equations (3) and (5), we obtain: 

𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑖𝑖∗𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑧𝑧𝑖𝑖𝐹𝐹
𝑅𝑅𝑅𝑅 𝜙𝜙� (7) 

Poisson equation is given by: 

𝑑𝑑2𝜙𝜙
𝑑𝑑𝑥𝑥2 =  −

𝜌𝜌(𝑥𝑥)
𝜀𝜀𝜀𝜀0

 
(8) 

Where 𝜀𝜀0 is the vacuum permittivity, 𝜀𝜀 is the dielectric 
constant of the medium and 𝜌𝜌(𝑥𝑥) is the space charge density 
in the electrolyte, given by 

𝜌𝜌(𝑥𝑥) = 𝐹𝐹[𝑧𝑧+𝑐𝑐+(𝑥𝑥) + 𝑧𝑧−𝑐𝑐−(𝑥𝑥)] (9) 

Substituting equations (7) and (9) into equation (8) and 
assuming 𝑧𝑧+ = 𝑧𝑧 and 𝑧𝑧− = −𝑧𝑧, we obtain: 

𝑑𝑑2𝜙𝜙
𝑑𝑑𝑥𝑥2 =  −

𝑧𝑧𝐹𝐹𝑐𝑐0
𝜀𝜀𝜀𝜀0

�𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑧𝑧𝐹𝐹
𝑅𝑅𝑅𝑅𝜙𝜙� − 𝑒𝑒𝑥𝑥𝑒𝑒 �

𝑧𝑧𝐹𝐹
𝑅𝑅𝑅𝑅𝜙𝜙��   

(10) 



 Orbital: Electron. J. Chem. 2021, 13(2), 108-114 
 

 

Published by Federal University of Mato Grosso do Sul | www.orbital.ufms.br                                                                                 110 

or  

𝑑𝑑2𝜙𝜙
𝑑𝑑𝑥𝑥2 =  −

2𝑧𝑧𝐹𝐹𝑐𝑐0
𝜀𝜀𝜀𝜀0

sinh �
𝑧𝑧𝐹𝐹
𝑅𝑅𝑅𝑅𝜙𝜙� 

(11) 

which is the nonlinear PNP equation. 
For potentials much smaller than the thermal voltage (𝜙𝜙 ≪

𝑅𝑅𝑅𝑅/𝐹𝐹), equation (10) becomes: 

𝑑𝑑2𝜙𝜙
𝑑𝑑𝑥𝑥2

=  
2(𝑧𝑧𝐹𝐹)2𝑐𝑐0
𝜀𝜀𝜀𝜀0𝑅𝑅𝑅𝑅

𝜙𝜙(𝑥𝑥) =  
1
𝜆𝜆𝐷𝐷2

𝜙𝜙(𝑥𝑥) 
(12) 

where 𝜆𝜆𝐷𝐷 is the Debye length, defined as 

𝜆𝜆𝐷𝐷 =  �
𝜀𝜀𝜀𝜀0𝑅𝑅𝑅𝑅

2𝑧𝑧2𝐹𝐹2𝑐𝑐0
�
1
2

   
(13) 

Equation (12) has the general solution 

𝜙𝜙(𝑥𝑥) = 𝐴𝐴𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑥𝑥
𝜆𝜆𝐷𝐷
� + 𝐵𝐵𝑒𝑒𝑥𝑥𝑒𝑒 �

𝑥𝑥
𝜆𝜆𝐷𝐷
� (14) 

But since 𝜙𝜙(𝑥𝑥) →  0 when 𝑥𝑥 → ∞, we have 𝐵𝐵 = 0. Constant 
𝐴𝐴 is given by the charge balance relation between the charge 
density on the metal side of the double layer (𝜎𝜎) and on the 
solution side (𝜌𝜌(𝑥𝑥)): 

𝜎𝜎 =  −  � 𝜌𝜌(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

0
 

(15) 

We then obtain: 

𝜙𝜙(𝑥𝑥) =
𝜎𝜎𝜆𝜆𝐷𝐷
𝜀𝜀𝜀𝜀0

 𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑥𝑥
𝜆𝜆𝐷𝐷
� (16) 

and the surface charge density is then  

𝜎𝜎 =
𝜀𝜀𝜀𝜀0
𝜆𝜆𝐷𝐷

𝑒𝑒𝑥𝑥𝑒𝑒 �
𝑥𝑥
𝜆𝜆𝐷𝐷
�𝜙𝜙(𝑥𝑥) (17) 

The double layer capacitance is then given by 

𝐶𝐶 =  �
𝑑𝑑𝜎𝜎
𝑑𝑑𝜙𝜙�𝑥𝑥=0

=
𝜀𝜀𝜀𝜀0
𝜆𝜆𝐷𝐷

 (18) 

Equations (16), (17) and (18) correspond to the linear 
approximation of the PNP equation. If one solves the 
nonlinear PNP equation, the results for the potential, surface 
charge density and capacitance are as follows: 

𝜙𝜙(𝑥𝑥) =
4𝑅𝑅𝑅𝑅
𝑧𝑧𝐹𝐹

tanh−1 �
√1 + 𝛼𝛼2𝜎𝜎2 − 1

𝛼𝛼𝜎𝜎 𝑒𝑒𝑥𝑥𝑒𝑒 �−
𝑥𝑥
𝜆𝜆𝐷𝐷
�� 

(19) 

𝜎𝜎 =
1
𝛼𝛼 sinh �

𝑧𝑧𝐹𝐹
2𝑅𝑅𝑅𝑅𝜙𝜙

(0)� (20) 

where 𝛼𝛼 = (8𝑅𝑅𝑅𝑅𝑐𝑐0𝜀𝜀𝜀𝜀0)1/2, and 

𝐶𝐶 =  
𝜀𝜀𝜀𝜀0
𝜆𝜆𝐷𝐷

cosh �
𝑧𝑧𝐹𝐹

2𝑅𝑅𝑅𝑅𝜙𝜙� (21) 

For the derivation of the nonlinear solution the reader is 
redirected to specialized references [1, 2]. 
 
1.2 Excess surface concentration 

Before the immersion of the electrode into the solution, the 
concentration of species 𝑖𝑖 is everywhere the same and it 
equals the bulk concentration 𝑐𝑐𝑖𝑖∗. But after the electrode is 
immersed and the double layer is formed, the steady state 
concentration distribution is no longer the same at every point. 
Suppose the electrode charges negatively. There will be an 
accumulation of cations and a depletion of anions in the 
interphase and the concentration 𝑐𝑐𝑖𝑖  of the ions can be higher 

(for accumulation) or lower (for depletion) than the bulk 
concentration. However, changes in concentration are often 
preferred rather than their actual values [1]. Therefore, we 
define the change in concentration 𝑐𝑐𝑖𝑖′(𝑥𝑥) as 

𝑐𝑐𝑖𝑖′(𝑥𝑥) = 𝑐𝑐𝑖𝑖(𝑥𝑥) − 𝑐𝑐𝑖𝑖∗  (22) 

We can now define the Gibbs excess surface 
concentration of species i (Γ𝑖𝑖) as the total concentration 
stored at the double layer in respect to the bulk concentration 
[1]: 

Γ𝑖𝑖 = � 𝑐𝑐𝑖𝑖′(𝑥𝑥)𝑑𝑑𝑥𝑥
∞

0
= � [𝑐𝑐𝑖𝑖(𝑥𝑥) − 𝑐𝑐𝑖𝑖∗]𝑑𝑑𝑥𝑥

∞

0
 

(23) 

The concept of surface excess is very important, because 
it is related to quantities such as interfacial tension and its 
dependence on concentration [1]. Furthermore, direct 
measurements of excess surface are achievable 
experimentally [1, 15]. 

 
1.3 Frequency domain analysis 

For the frequency domain analysis, a harmonic potential 
perturbation was applied to the electrode surface according 
to 

𝜙𝜙𝑀𝑀 = 𝜙𝜙𝑑𝑑𝑑𝑑 + 𝜙𝜙0 sin(𝜔𝜔𝜔𝜔) (24) 

where 𝜙𝜙𝑀𝑀 is the potential at the electrode surface, 𝜙𝜙𝑑𝑑𝑑𝑑 is the 
dc voltage applied by an external source, 𝜙𝜙0 is the amplitude 
of the perturbation and 𝜔𝜔 is the angular frequency. 

For the current analysis, since there is no faradaic reaction, 
only a capacitive charging/discharging current exists and is 
given by the displacement current (25) 

𝑗𝑗𝑑𝑑 = 𝜀𝜀𝜀𝜀0 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝜔𝜔 � =  −𝜀𝜀𝜀𝜀0

𝜕𝜕
𝜕𝜕𝜔𝜔 �

𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥� (25) 

In order to work in the frequency domain, it is necessary to 
apply the Laplace transform on equation (25), which becomes 

𝑗𝑗𝑑𝑑 = −𝑖𝑖𝜔𝜔𝜀𝜀𝜀𝜀0 �
𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥� (26) 

where 𝑖𝑖 is the imaginary number. 
For the potential, the Laplace transform is not necessary 

because the software used has a built-in operator that can be 
used in this case. This will be discussed in section 2. 

The impedance 𝑍𝑍 is then defined as 

𝑍𝑍 =
𝜙𝜙0 sin(𝜔𝜔𝜔𝜔)

−𝑖𝑖𝜔𝜔𝜀𝜀𝜀𝜀0 �
𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥�

 
(27) 

For a capacitor, the impedance 𝑍𝑍𝐶𝐶  is given by 

𝑍𝑍𝐶𝐶 =
1

𝑖𝑖𝜔𝜔𝐶𝐶𝑑𝑑𝑑𝑑
   (28) 

where 𝐶𝐶𝑑𝑑𝑑𝑑 is the double layer capacitance. 

2. Material and Methods 

The simulations in this study were carried out in the finite 
element software COMSOL Multiphysics® version 5.4 [16]. All 
simulations were run in a computer with 8GB DDR4 RAM, intel 
core i5 8265u processor and a 2GB dedicated video card 
NVIDIA MX110. 

The model assumed a one-dimensional geometry with two 
nodes, one taken as the electrode surface and the other taken 
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as the bulk of the electrolyte. A binary 1:1 electrolyte with an 
oxidized and a reduced species was defined and dilute 
solution transport theory was assumed. 

The mesh was defined with the total of 232 elements. For 
the electrode boundary node, the maximum element size was 
9.6198x10-13m and for the rest of the domain, it was 
4.8099x10-11m. The element growth rate was of 1.3, which 
means that each element is 30% larger than the previous 
element. This growth only happens near the surface boundary, 
since in the electrolyte domain all elements have the same 
size.  

For the validation of the model, the numerical solution was 
compared with the analytical solution of the PNP equation for 
low potentials (linear solution) and high potentials (nonlinear 
solution). The results for the validation process are shown in 
Figures 1 and 2. The potential at the electrode was varied, for 
the linear solution, from -20mV to 20mV and for the nonlinear 
solution, from -100mV to 100mV. 

For the electrochemical impedance spectroscopy study, 
an ac voltage of 5mV was applied over the stationary dc 
voltage, which was varied from -100mV to +100 mV. The 
frequencies used for the ac voltage varied from 10-1 to 103 Hz. 

For the application of the ac voltage, COMSOL has a built-
in operator, called linper that applies a linear perturbation to a 
function where it takes the input as the amplitude of 
oscillation. This operator can be used only for input variables, 
such as the potential [17]. For the response variables, such as 
the current density, the explicit expression in the frequency 
domain (obtained by the Laplace transform, in section 1.3) 
has to be defined. 

For the surface excess concentration calculations the 
potential was varied from -100mV to 100mV and the bulk 
concentration was varied from 10-2 to 1 mol.L-1.      

3. Results and Discussion 

Figure 2 shows the potential distribution as a function of 
position 𝑥𝑥 (in units of Debye length), where the circle refers to 
the numerical solution, the solid line refers to the nonlinear 
solution and the dashed line refers to the linear solution. In 
Figure 2a, the applied potential is 100mV, which is greater than 
the thermal voltage 𝑅𝑅𝑅𝑅/𝐹𝐹 ≈ 25𝑚𝑚𝑚𝑚. In this region, we can see 
that potential distribution cannot be described by equation 
(16), which is the linear approximation, and has to be 
described by equation (19). In Figure 2b, the applied potential 
is 20mV. Here, the linear and nonlinear solutions coincide and 
therefore, the dashed line cannot be seen. In this region, the 
linear solution is valid and equation (16) can be used for the 
potential distribution. In both figures, the numerical solution 
agrees perfectly with the nonlinear solution, which shows that 
the simulation is in agreement with theory. 

Figure 3 shows the surface charge density (σ) as a 
function of applied potential. As in Figure 2, the circle refers to 
the numerical solution, the solid line refers to the nonlinear 
solution and the dashed line refers to the linear solution. In 
Figure 3a, the applied potential was varied from -100mV to 
+100mV. We can see that for potentials greater that the 
thermal voltage, the linear approximation fails, while the 
nonlinear solution agrees with the numerical results. Figure 3b 
is an enlargement of the region ranging from -20mV to +20mV 
of Figure 2a and shows that in this range of potentials, the 
linear approximation holds true. 

These results show that our model is in agreement with 
the expected results from the theory. From the data presented 
in Figure 3 it is possible to derivate the curves and therefore 
obtain the differential Gouy-Chapman capacitance. 

 
 

  
                                                (a) 100mV                                  (b) 20mV 
Fig. 2. Potential distribution curves for the numerical (circles), linear (dashed lines) and nonlinear (solid lines) solutions. 

 
Figure 4 shows the space charge density distribution 

(𝜌𝜌𝑠𝑠𝑠𝑠𝑠𝑠𝑑𝑑𝑠𝑠) for +20mV and +100mV (lower dashed and solid lines, 
respectively), and for -20mV and -100mV (upper dashed and 
solid lines, respectively) as a function of position. We can see 
that, for positive potentials, there is an accumulation of 
negative charge on the solution side, and for negative 
potentials, the accumulation is of positive charges, as is 
expected from charge conservation condition. 

Figure 5 shows the concentration profile for the cation and 
the anion for 100mV (5a) and 20mV (5b) divided by the bulk 

concentration 𝑐𝑐∗, which is shown by the dashed line. The lower 
curves refer to the cation concentration and the upper curves 
refer to the anion concentration. It is possible to notice in 
Figure 5 that when the potential is lower, the anion and the 
cation concentration profile are more symmetric with the bulk 
concentration than for higher potentials. The reason for this 
asymmetry is that the concentration cannot be less than zero 
and, therefore, as the potential increases, for example, in the 
negative direction, the interphasial region starts to lack anions 
to deplete, so, in order to compensate the electrode charge 
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and to achieve the space charge density profile shown in 
Figure 4, more cations need to be attracted, causing the 
asymmetry shown in Figure 5a for high potentials. 

 

  

                                               (a) high potentials                            (b) low potentials 
Fig. 3. Surface charge distribution for numerical (circles), linear (dashed lines) and nonlinear (solid lines) solutions. 

 

 
Fig. 4. Space charge density distribution for ±100mV (solid 
lines) and ±20mV (dashed lines). 

 

Figure 6 shows the excess surface concentration for bulk 
concentrations of 0.01mol/L (solid line), 0.1mol/L (dotted 
line) and 1mol/L (dashed line) as a function of applied 
potential. Values of excess surface can be as high as 60x10-8 

mol/m2 and as low as -30x10-8 mol/m2, which shows the same 
asymmetry showed in Figure 3. Negative values of excess 
concentration mean depletion, while positive values mean 
attraction of ions. 

Figure 7a shows the Nyquist diagram for applied dc 
potential of 100mV for frequencies varying from 10-1Hz to 
103Hz. Z’ refers to real part of the impedance and Z’’ refers to 
its imaginary part. Since our simulation models a blocking 
electrode, no faradaic reactions occur and, therefore, the 
impedance spectrum is that of an ideal capacitor. Figure 7b 
shows the phase angle (θ) as a function of frequency (f) and, 
as expected for a capacitor, it is 90 degrees for all frequencies.

 

  

                                                (a) 100mV                            (b) 20mV 
Fig. 5. Concentration distribution cation (lower curves) and anion (upper curves). Dashed line refers to the bulk concentration. 
 

Figure 8a shows the Nyquist diagram for frequency of 1Hz 
for five different dc potentials. Star is for 20mV, circle for 
40mV, diamond for 60mV, square for 80mV and plus sign for 
100mV. Since the capacitance is inversely proportional to the 

imaginary value of the impedance, we can see that as the 
potential increases, the imaginary impedance decreases and 
the capacitance increases, as shown in Figure 8b for the entire 
range of potentials. 
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(a) Cation    (b) Anion 
Fig. 6. Excess surface concentration for 0.01mol/L (solid line), 0.1mol/L (dotted line) and 1mol/L (dashed line). 

  

                              (a) Nyquist diagram                                      (b) Phase angle 
Fig. 7. Results of impedance study for frequencies varying from 10-1Hz to 103Hz. 
 

  

                          (a) Nyquist diagram for f = 1Hz                                      (b) Capacitance 
Fig. 8. (a) Nyquist diagram for different dc potentials and (b) capacitance as a function of applied potential from impedance study. 

 

4. Conclusions 

We presented a simple model for the study of the double 
layer structure. It was shown that for potentials lower than the 
thermal voltage (≈ 25𝑚𝑚𝑚𝑚) the linear approximation of the PNP 
solution is valid, while for higher potentials the complete 

nonlinear PNP equation is necessary for the description of the 
potential distribution and the space charge density. Frequency 
domain analysis was also carried out and the total 
capacitance was obtained from it. Results from impedance 
analysis corroborated the PNP description of the nonlinear 
capacitance as a hyperbolic function of potential. Therefore, 
our results are in agreement with the analytical predictions, 
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which shows that the model is suitable for the study of the 
structure of the EDL. Next steps include the implementation 
of geometrical and thermodynamic non-idealities, such as 
porous electrodes and concentrated solutions. 
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