Supplementary Information

A Straightforward Method for Synthesizing Bioactive Resorcinolic Lipid Analogues

Denilson Silva dos Santos^a, Alisson Meza^b, Roberto da Silva Gomes^c, Dênis Pires de Lima^a, and Adilson Beatriz^{a*}

 ^aInstituto de Química, Universidade Federal de Mato Grosso do Sul; Av. Senador Filinto Muller, 1555; Campo Grande, MS 79074-460, Brazil.
^bCentro Universitário Anhanguera de Campo Grande; Av. Gury Marques, 3203; Campo Grande, MS 79060-000, Brazil.
^cSchool of Pharmacy, North Dakota State University; 1401 Albrecht Boulevard; Fargo, ND 58102, USA.

Experimental procedure [1]

(E)-ethyl undec-2-enoate (4): PCC (18.24 g, 300 mmol) was suspended in 120 mL of anhydrous dichloromethane, and 1-nonanol (6.6 g, 8 mL, 200 mmol) was added under stirring. The resulting mixture was refluxed for 2 h and left to cool. A 20 mL volume of ethyl ether was then added, the mixture filtered in celite, and the solid washed with dichloromethane $(3 \times 40 \text{ mL})$. The organic phases were combined and the solvent removed under reduced pressure. Freshly prepared nonaldehyde (142 g, 0.8 mol) was slowly added under stirring to a solution of malonic acid (114 g, 1.1 mol) in anhydrous pyridine (180 mL) previously cooled to 0 °C. The resulting reactive mixture was stirred at room temperature for 60 h and subsequently heated in a water bath (50-80 °C) until CO₂ evolution was no longer detected (~8 h). A 400 mL volume of distilled water was then added to this mixture. The organic phase was separated and washed with 25% HCl (3×100 mL) for pyridine removal. The solvent was then removed, the residue dissolved in benzene and washed with distilled water (3 \times 60 mL), the organic phase dried with anhydrous MgSO₄, and the benzene solvent distilled under reduced pressure, yielding 124 g of (E)-undec-2-enoic acid as a colorless liquid. For preparation of ester 4, 100 g (0.31 mol) of (E)-undec-2-enoic acid was dissolved in ethanol (384 mL), followed by addition of sulfuric acid (7.7 mL). The mixture thus obtained was refluxed for 5 h and allowed to rest at room temperature for a further 24 h, after which the product was extracted with dichloromethane. The solvent was removed under reduced pressure and a 65 g amount of ester 4 was obtained as a colorless liquid. The overall yield (calculated from 1-nonanol) was 48%.

^[1] Vogel. A. I.; Furniss. B. S.; Hannaford A. J.; Smith P.W.G.; Tatachell A. R. **Vogel's Textbook of Pratical Organic Chemistry**. Co-published in the United States, 605 Third Avenue, New York, Longman Group UK Ltd., **1989**, 5th ed., pp. 806-807.

¹H NMR and ¹³C NMR spectra of the synthesized compounds

Figure S1. ¹H NMR spectrum (300 MHz, CDCl₃) of (*E*)-undec-2-enoic acid.

Figure S2. ¹³C NMR spectrum (75 MHz, CDCl₃) of (*E*)-undec-2-enoic acid.

Figure S3. ¹H NMR spectrum (300 MHz, CDCl₃) of (*E*)-ethyl undec-2-enoate (4).

Figure S4. ¹³C NMR spectrum (75 MHz, CDCl₃) of (E)-ethyl undec-2-enoate (4).

Figure S5. ¹H NMR spectrum (300 MHz, CDCl₃) of 1.

Figure S6. ¹³C NMR spectrum (75 MHz, CDCl₃) of 1.

Figure S7. ¹H NMR spectrum (300 MHz, CDCl₃) of 2.

Figure S8. ¹³C NMR spectrum (75 MHz, CDCl₃) of 2.

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Chemical Shift (ppm)

Figure S10. ¹³C NMR spectrum (75 MHz, CDCl₃) of 3.