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Abstract: 
Fish burgers as new products require their shelf life investigated. Sensory results usually do not follow a 
homogeneous profile, as it measures human perception. Once the sensory and physicochemical monitoring of the 
shelf life takes time and considerable investment, the Near Infrared spectroscopy comes as a fast instrumental 
technique, which can access multiple parameters from the sample at the same time. In order to replace traditional 
methods improving mathematical modeling, the objective of this study is the estimation of the data preprocessing 
and homogeneity (Kolmogorov–Smirnov) influence in the quality parameters of Partial Least Squares modeling. 
Calibration and validation models were evaluated by means of correlation coefficient, Rank, robustness and 
Residual Prediction Deviation. All the preprocessing available on the software Opus Lab® were tested and 
compared. 72 readings/8 samples of refrigerated grass carp burgers originated the data regarding its water activity, 
rancid taste, pH and reactive substances of thiobarbituric acid results. The preprocessing methods accessible were 
Standard Normal Variate, Multiplicative Scatter Correction, 2nd derivative, 1st derivative, Straight Line Subtraction 
and Min/Max. Each chosen preprocessing generated a model with different parameters. The homogeneity of data 
proved to have a direct influence on the robustness, confirming the challenge to fit sensory results in Partial Least 
Squares prediction models. New possibilities to investigate meat products were shown. 
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1. Introduction 

Spectroscopy in the infrared region has gained 
notoriety as an analytical technique [1] for over a 
decade. This technique has already been 
approved by the Association of Analytical 
Communities (AOAC) as a technique for the 
analysis of moisture, fat, and protein in meat and 
meat products [2]. In recent years, the meat 
industry has been showing an increasing demand 
for fast quality control methods to keep up with the 
industrial pace. While physicochemical and 
sensory analyzes are usually time-consuming, the 
Near Infrared spectrometry (NIR) is fast and non-
destructive. This technique requires a small 
amount of sample and, in addition, it is of high 
precision, accessing several properties of the 
product simultaneously, and also correlates the 

physicochemical characteristics with the sensorial 
ones through the statistical analysis of linear 
regression [2–9]. 

The development of a mathematical model in 
NIR, which relates the sensory and 
physicochemical information, could be used as a 
rapid method of quality analysis [10] which would 
optimize the quality assurance process. The NIR 
consists in the analysis of samples to provide 
analytical information directly after the reading, 
through absorption or emission of radiation, due 
to the variation of molecular energy associated to 
the vibrational transitions, by the absorption or 
emission of a photon, without electronic change 
[1]. Coupled to a computer and software there is 
scope for rapid decision-making on the quality of 
the sample if there is a calibrated and validated 
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model of the available product. However, due to 
the distance of the equipment from the production 
line, statistical misunderstandings, and some 
sampling errors, the NIR has been used only as a 
complement to the other analyzes [10]. 
Mathematical models that predict food quality, for 
example, are important to overcome the 
limitations found in the analyzes, such as time and 
apparatus sensitivity [11].  

A multivariate calibration method commonly 
used for NIR data is the Partial Least Squares 
(PLS) regression. Within this analysis it is possible 
to choose parameters, including preprocessing 
(PS) of the data. However, caution is 
recommended when randomly selecting spectral 
regions, it is significant, but one can eliminate the 
regions that are related to the expected effect, and 
that only aid in multivariate calibration via PLS 
[12–14]. 

Choosing a suitable PS method can be a 
challenging task. The PS can remove noise, 
outliers, and unwanted spectral variation, 
improving the predictive model. The most used 
PS are 1st and 2nd derivatives (1st DER and 2nd 
DER), multiplicative scatter correction (MSC) and 
standard normal variate (SNV), in order to obtain 
the best data treatment [14, 15]. The literature 
discussing data distribution and its influence on 
NIR are scarce, Vukovinsky and Pfahler [16] 
mention the importance of data normality, not only 
its assumption, highlighting that outliers could 
arise when non-normal data are analyzed by NIR, 
and therefore the model would predict a change 
not accounted, thus it would not predict well. Data 
distribution is essential, and the distribution 
analyses are most assessed as a prior step, while 
Chen et al. [17] evaluated spectra wavelength 
distributions and both ways demonstrate the 
importance of normality for NIR. 

Given this information, the objective of this 
study is the estimation of the data PS and 
homogeneity influence (normality by means of 
Kolmogorov–Smirnov) in the quality parameters 
of PLS modeling. The product analyzed is the 
grass carp burger, and the sensory parameter of 
interest measured in the present study is the 
rancid flavor, followed by physicochemical 
properties, water activity (aw), content of 
thiobarbituric acid (TBARS) and pH. 

2. Results and Discussion 

To encourage fish consumption, fish burgers 
are a good strategy to increase the stability of the 
meat and practicability of preparation [18,19] and 
one of the main parameters of its quality is the lipid 
oxidation [20, 21], easily accessed through 
sensory analysis and TBARS [22]. The reference 
analysis for NIR were pH, TBARS, rancid flavor 
and water activity (aw), during the 30 days of 
storage of the fish burger. The PLS models were 
validated through the test set and cross-
validation, testing the best PS of data for each 
attribute analyzed, even though it is possible to 
choose no PS.  

Regarding the pH analysis, with no PS, the 
best fit was the 1st DER + straight line subtraction 
SLS, correlation coefficient (R²) of 95.12%, ratio 
of performance to deviation (RPD) 4.79 and Rank 
7 (Table 1) in the test set and 84.97% of R² for 
calibration. The 1st DER PS calculates the DER of 
the spectrum, leaving the more pronounced signs 
in emphasis instead of the flatter bands, 
increasing the homogeneity of the signals [9, 23]. 
It is one of the best methods for removing baseline 
effects, highly used as pre-treatment of NIR data 
[15]. 

The R² represents the percentage of variability 
that was reproduced by the predicted model. 
Above 90% the R² is considered suitable for solids 
analysis in the NIR [23] and the R2 of 80% is 
considered a limit of reliability when it comes to R2 
[10]. In addition, the Rank is a value from 0 to 10, 
representing the factors used by PLS. The lowest 
Rank values represent major changes in the 
spectrum, and values close to 10 express small 
spectral changes and may include noise from 
spectral lines. Ranks near to 5 are considered 
ideal for PLS models because it is centralized, 
capturing the most important changes [23, 24]. 
The pH best model achieved a worthy R2, and the 
Rank 7 can be already affected by noise. 

No PS improved the data correlation. The root 
mean square errors of prediction (RMSEP)/ root 
mean square errors of cross-validation 
(RMSECV) ratio was 0.92, indicating a robust 
model. Values closer to one (1.0), indicate greater 
robustness of the model [25]. The predictive 
quality of the model is also proven by the cross-
validation error, RMSECV (0.0936), the lower the 
value, the better the correlation between the raw 
data and the predicted by the model [23]. This 
model with these characteristics can be 
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considered accurate.  

The RPD is the quotient of the standard 
deviation between true and predicted values of 
the model and is directly related to the variability 
explained by R². This value demonstrated in this 
case that the pH model had an adequate 
distribution. RPD values greater than 3.0 are 

considered good, greater than 8.0 are excellent 
and bellow 3.0 they are not trustworthy for quality 
control [23]. Given this fact, the model found for 
the pH showed aptitude for quality control of grass 
carp burgers with RDP near to 5.0. Data 
distribution is normal when analyzed by the 
Kolmogorov-Smirnov test (p> 0.20), corroborating 
the accuracy of the model. 

Table 1. Best pH NIR results with and without PS. 
Calibration Cross-validation Test Set validation 

R² (%) RMSEC RPD R² (%) RMSECV RPD R² (%) RMSEP RPD 
NO PS = [1st DER] + SLS – Rank 7 

84.97 0.168 2.58 48.17 0.0936 1.39 95.12 0.0869 4.79 
PS [SNV] + SLS – Rank 7 

83.35 0.176 2.45 42.91 0.299 1.32 77.16 0.187 2.09 
PS [MIN/MAX] + SLS – Rank 8 

83.61 0.177 2.47 24.89 0.344 1.15 90.64 0.12 3.30 
PS [1st DER] + 1st DER + MSC – Rank 5 

77.20 0.264 2.09 34.34 0.325 1.23 86.59 0.143 2.82 
PS [2nd DER] +1st DER – Rank 8 

87.18 0.158 2.79 17.18 0.365 1.12 72.05 0.207 2.01 

Considering the best TBARS PLS model 
without any PS, the chosen correction was 1st 
DER + MSC. The R2 found is 94.40%, RPD 4.34 
and Rank 3 in the Test Set in addition of 55.49% 
of R² for calibration.  

In an attempt to improve the R2, all PS were 
applied and the best models are reported in Table 

2. The PS SNV + 1st DER + MSC with Rank 2 
improved the correlation and the RPD to 5.71, 
which demonstrates the model's ability to quality 
control. The calibration results did not present a 
high R² value and it can be attributed to the input 
data made of less than hundred readings. Data 
distribution was normal when analyzed by the 
Kolmogorov-Smirnov test (p> 0.20). 

Table 2. Best PS NIR results applied to TBARS data compared to non-PS results. 
Calibration Cross-validation Test Set validation 

R² (%) RMSEC RPD R² (%) RMSECV RPD R² (%) RMSEP RPD 
NO PS = [1st DER] + MSC – Rank 3 

55.49 0.158 1.5 35.33 0.182 1.24 94.40 0.0484 4.34 
PS [COE] + 2nd DER – Rank 2 

71.78 0.177 1.88 58.73 0.136 1.56 59.84 0.132 1.60 
PS [SNV or MSC] + 1st DER + MSC e PS[1st DER] + MSC – Rank 2* 

54.13 0.157 1.48 28.5 0.062 1.18 94.70* 0.0482 5.71 
PS [2nd DER] + 1st DER + MSC – Rank 6 

57.11 0.158 1.53 18.53 0.203 1.11 90.36 0.0649 3.30 
* PS that has improved PLS model performance. 
 

The ratio RMSEP/RMSECV calculated was 
0.77, indicating a model with intermediate 
robustness. A low value of RMSECV (0.062) 
confirms the predictive quality of the model. The 
value of 0.15 found for root mean square errors of 
calibration (RMSEC) corroborates results of [6] for 
FT-NIR with ground beef, which established 0.10 
for this same parameter and 0.12 for RMSECV. 
Researchers [6] found that the 2nd DER PS better 
for TBARS data. The 2nd DER as the 1st DER are 
very effective to remove baseline offset and the 
2nd DER additionally removes linear trend from a 

spectrum, polishing the data [15].  

Combining the 1st DER with MSC and SNV, 
the base line offset was removed, multiplicative 
and/or additive scatter effects were compensated 
and a range scaling enable the dissimilar 
intensities of the samples to be compared. SNV 
centers and scales each individual spectrum 
[15,26]. Therefore, despite the low correlation in 
calibrations results, the normality of the data 
propitiated a good validation model, after the SNV 
PS addition to the 1st DER + MSC. SNV 
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application also decreased the Rank to 2, what 
indicates only major changes being considered by 
the model, and perhaps some characteristic was 
ignored. 

Regarding the results of rancid flavor, the 2nd 
DER without PS was the best fit, with 94.11% of 
R², RPD of 4.21 and Rank 5 (Figure 9) in the Test 
Set; and R² of 53.42% for calibration. All PSs were 
applied and the best ones are reported in Table 3, 
but none improved the correlation. The calibration 
results did not present a high R² value and it can 
be accredited to the input data made of less than 
hundred readings. We suggest a wider input data, 

containing more readings, to further 
investigations. 

For both the TBARS and rancid taste models, 
the calibration involving 70% of the responses 
resulted in a relatively low R², which may have 
occurred because there was a high frequency of 
near zero values in the first days of analyses and 
a rapid increase in the values with subsequent 
stabilization. This fact leads to a greater 
accumulation of data at the beginning of the 
regression line, which decreased the R2 for 
calibration. 

 

Table 3. Best PS NIR results applied to rancid flavor data compared to non-PS results. 
Calibration Cross-validation Test Set validation 

R² (%) RMSEC RPD R² (%) RMSEC RPD R² (%) RMSEP RPD 
NO PS = [2nd DER] – Rank 5 

53.42 1.98 1.47 13.63 0.92 0.938 94.11 0.541 4.21 
PS [SNV] + 2nd DER – Rank 5 

54.99 1.95 1.49 14.56 2.92 0.936 86.65 0.573 2.76 
PS [1st DER] + 2nd DER – Rank 7 

61.93 1.84 1.62 26.33 3.09 0.892 76.55 1.06 2.07 
PS [2nd DER] + 1st DER + SLS – Rank 7 

61.88 1.84 1.62 25.06 3.07 0.897 76.93 1.05 2.08 
PS [MSC] +1st DER– Rank 8 

61.86 1.86 1.62 85.17 3.74 0.736 73.59 0.824 1.95 

The  Kolmogorov-Smirnov  normality   test        
(p < 0.05), as shown by the histogram of Figure 1, 
did not confirmed normal distribution, due to the 
high frequency of values close to zero at the 
beginning of the analyses, that contributed to this 
fact. Data from sensory analysis assessing 
trained panels rarely demonstrate normal 
distribution, since the perception presents itself in 
a very homogeneous manner, without much 
variation.  

Despite the RPD of 4.21 showing the quality of 
the model, and the Rank centralized (5) the best 
as possible, the ratio RMSEP/RMSECV of 0.58 
indicates weak robustness. The predictive quality 
analyzed by the RMSECV obtained a higher value 
than the other models tested, of 0.92. Figure 1 
represents the difference between a normal data 
distribution, and the non-normality. The 
calibration with all the values, the 72 readings, 
shows the influence of data agglomeration in 
certain points of the plot as the main reason for 
not obtaining robust models. Not even the PS 2nd 
DER, whose effects were mentioned above, or 

any other PS tested could improve robustness.  

The aw as the rancid flavor did not present 
normal distribution (p < 0.01). The elevate amount 
of similar values did not allow a suitable 
distribution. Table 4 shows the best results of all 
the PS attempts for aw: 1st and 2nd DER, MIN/MAX 
and SNV. Four models of PLS were elaborated for 
aw, in addition to the model generated without PS, 
which found a better fit in the SLS, with R² 
correlation of 70.02%, RPD of 1.92 and Rank 8 in 
the Test Set (external validation); besides a R² of 
90.56% in the calibration. 

Intermediate models were also generated 
when MIN/MAX and the 2nd DER was applied as 
PS. The 1st DER propitiated the model with the 
lowest R2, 63.31%, and was therefore not suitable 
for the construction of predictive models for aw in 
grass carp burgers. The model with the PS 
MIN/MAX + SLS presented a R² of 85.06% for 
calibration, 73.09% for external validation and 
Rank 6, which was determined as the best model 
for predicting aw of the fish burgers. 
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The PS improved the correlation of the 
validation data, so the model chosen for aw was 
the one with PS [MIN / MAX] + SLS. The R² 
improved, and the Rank became more centralized 
(value of 6). In addition to the RPD for the 
calibration model, placed above 2, considered an 

adequate value [27] but not suitable for quality 
control. The ratio (RMSEP / RMSECV) of the PLS 
model for aw was 0.65, not as adequate as pH and 
TBARS. The high frequency of similar responses 
to aw contributed to low determination coefficients 
of the PLS modeling. 

a) 

 

b) 

 
c) 

 

d) 

 
Figure 1. Histogram of the rancid flavor (a); the pH (b); scatterplots of the measured values versus the 

predicted ones from the rancid flavor (c) and the pH (d). 
  

Table 4. Best PS NIR results applied to aw data compared to non-PS results. 
Calibration Cross-validation Test Set validation 

R² (%) RMSEC RPD R² (%) RMSEC RPD R² (%) RMSEC RPD 
NO PS = [SLS] – Rank 8 

90.56 0.00099 3.25 59.50 0.00189 1.59 70.02 0.00146 1.92 
PS [SNV] + NO PS – Rank 9 

93.71 0.00083 3.99 68.77 0.00167 1.79 72.96 0.00142 1.99 
PS [MIN/MAX] + SLS – Rank 6* 

85.06 0.00123 2.59 45.06 0.0022 1.36 73.09* 0.00142 1.93 
PS [1st DER] + MIN/MAX – Rank 5 

66.22 0.00183 1.72 12.73 0.00277 1.07 63.31 0.00165 1.66 
PS [2nd DER] + SLS – Rank 6 

81.42 0.00138 2.32 37.2 0.00236 1.27 68.94 0.00152 2.00 
* PS that has improved PLS model performance. 

 

PS the data not always improve the 
correlations comparing with the default 

processing made by the software, although 
sometimes it helps only one of the three sets 
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(calibration, cross-validation or test set), as we 
can see with the aw (Figure 2). Test set validation 
improved 3% and the outlier value is not 
considered as that anymore. Analyzing the data 
from rancid flavor and aw, the non-normality 
hinders the PS action, what means that 
agglomerated values not always can be improved 
do fit in linear predictions. Despite the other 

parameters considered, the R² of cross-validation 
from the best fitting for rancid taste, is low (13.63) 
and only one PS improved that (PS [MSC] +1st 
DER), to a value of 85%, however, the test set R² 
decreased 20%. All these facts clarify that all PS 
methods must be tested over the data, in order to 
try any significant improvement that could enrich 
the predictive model.  

 
a) Calibration 

 

b) 

 
Cross-validation 

 

 

 
Test Set 

 

 

 
Figure 2. PS effect on aw fitting; regarding calibration, cross-validation and test set for NO PS (a) and 

the best PS process (b). 
 
Chemometric analyses of NIR spectral data 

combined with sensory parameters represent a 
relatively recent procedure. Prieto et al. and 
Rødbotten et al. [2, 8] found a low correlation 
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(0.34-0.51%) between the sensory data for meat 
tenderness and the NIR spectra. Andrès et al. [10] 
also found a low correlation (0.13-0.38%) 
between NIR and the sensory analysis for mutton, 
but suggested that perhaps a more specific group 
of sensory characteristics could be applied, or that 
the samples be selected between the best and the 
worst results, allowing for greater correlations to 
be achieved. Liu [28] reported 0.50 and 0.58% of 
R² for chewiness and juiciness parameters, not 
adequate values for reliable models. Ripoll [29] 
obtained low correlations between NIR and the 
succulence and overall quality of steaks, and a 
good fit (R² = 0.97%) for softness.  

 However, good models and correlations have 
been found between NIR spectral data and the 
physical and chemical parameters of foods, such 
as the robust models found by way of TBARS and 
pH in the present study. Studies have reported 
that the intramuscular fat content showed a good 
correlation with the NIR spectral data of mutton 
[10], the beef pH value [4], the TBARS of ground 
meat [6], and the moisture content of beef [29], all 
with R² > 0.84%.        

As for the sensory parameters predicted by the 
NIR spectral data, [30, 31] obtained good 
calibration and validation models for the sensory 
attributes of coffee (acidity, body, overall quality, 
etc.), indicating the possibility of estimating the 
sensory results and monitoring their quality by 
NIR. 

However, they did not follow through the shelf 
life to determine if NIR detected instrumentally the 
differences obtained in the sensory evaluation on 
the same scale. In addition, the models obtained 
and used by [31] provided Rank considered high 
(from 7 to 9) and errors not as low as expected, 
and [30] did not carry out an external validation. 

When a person is applied as a measurement 
parameter, there are numerous differences in the 
results when compared to instrumental and 
physicochemical analyses. Each assessor has a 
perception threshold. Nevertheless, as Weber's, 
Fechner, and Stevens's laws of psychophysics 
suggest, when the stimulus is weak and near the 
threshold, the sensation and discrimination are 
also feeble [32]. This behavior was verified by the 
emergence of several zeros on the rancidity scale 
for the fresh fish burgers and after seven days of 
storage, compromising the generation of the PLS 
model, even with the exponential increase in 

rancidity shown in the sensory analysis and using 
TBARS. 

In addition, the sensitivity of the apparatus may 
have only detected differences considered large 
ones, while the trained panel considered more 
subtle differences [10]. The solid relation found 
between NIR and sensory results is the rancid 
flavor and TBARS since they are connected to the 
burgers fat content and its changes during 
storage. Therefore, the general spectrum 
confirmed the detection of fatty acids, as it 
presented a peak in the overtone region, 
characteristic of carboxylic acids, present in fatty 
acids [23], exactly at 5250 cm-1 in the first 
overtone and 4900-4600 cm-1 in the combination 
band region. However, TBARS achieved a better 
model than rancid flavor, despite the obvious 
connection between them.  

Besides the sensitivity of the apparatus, other 
factors have direct influence on NIR results. 
According to others researchers [33], the 
sampling presentation, statistical choices, the 
operator and environment (temperature, 
vibrations, light) can interfere on results. In the 
present study, all the efforts to control these 
factors were made. We kept the room 
temperature at 18°C, and employed the same 
previously trained operator for sampling, 
achieving a homogenous way of setting the 
samples inside the probe for solids, besides the 
careful analysis of the statistical possibilities as 
shown through the present work. 

NIR calibration consists in a great amount of 
work, with many samples applied to achieve 
robust models. Nevertheless, after the calibration 
and validation, one can only analyze new samples 
and predict the results with the model. Further 
studies with grass carp burgers should use more 
samples (more than 100) to gather perhaps better 
R2, RPD values and calibration models adequate 
for quality control. Another suggestion to future 
studies is the attempt to fit other sensory 
parameters into PLS regression, as the current 
literature and research still does not show solid 
results on this matter, especially none in fish 
burgers.  

 

3. Material and Methods 
Raw material and hamburger manufacture 



Marques et al. 
FULL PAPER 

 
 

Orbital: Electron. J. Chem. 11 (6): 339-347, 2019 346 

The grass carp fishes were purchased from a 
project partnership with a local fish farmer. After 
the capture, the fish were percussive stunned in 
the head, slaughtered (marrow section followed 
by bleeding), peeled, gutted and filleted for 
transport (in Styrofoam boxes with ice). The 
burgers were prepared in the Food Technology 
Laboratory at UTFPR (N008) according to the 
formulation and procedure described by [34]. 

 

Physicochemical and sensory analysis 

The pH of the burgers was measured in 25g of 
hamburger and 5mL of water in the benchtop 
equipment (TECNAL®) with the sensor coupled to 
a digital meter. The determination of TBARS 
followed [35] and the calculation was based on a 
malonaldehyde standard curve. The standard 
applied was the 1,1,3,3-Tetramethoxypropane 
99%, Sigma-Aldrich®. The aw was measured 
directly on the AquaLab instrument (Tecnal®), 
with a default of water 1.00. The physicochemical 
results are not shown at the present work. The 
sensory procedures are described by [34]. 

 

NIR evaluation and data processing 

The NIR spectrum was collected by the 
spectrophotometer (FT-NIR MPA, Bruker 
Optics®, Ettlingen, Germany) in room 
temperature (25 ±1°C), 12500 to 3600 cm-1 of 
scanning and 16 cm-1 of resolution. On each day 
of analysis, nine burgers separated for sampling 
were read, resulting in 72 different samples for 
NIR reading. The predictive model considered 
firstly the Cross-validation (internal) - with 70% of 
the calibration samples (excluding one sample 
every 50 to ensure that all are validated) and the 
Test set (external) with the 30 % of the remaining 
samples. A random selection separated the 
samples. 

The NIR OPUS Lab® 7.2 software calculated 
the PLS multivariate models. A calibration and a 
validation model were obtained for each chosen 
reference analysis, with or without PS. The 
Statistica® software 12.7 processed the data and 
graphically plotted the histograms. Kolmogorov-
Smirnov (KS) determined the data distribution 
through the same software. 

Selected merit figures assessed the accuracy 
of the models, giving basis for comparison. They 

were the R², RPD, RMSEC, RMSEP, and 
RMSECV. In addition, the ratio between RMSEP 
and RMSECV (RMSEP/RMSECV) was acquired 
to evaluate the robustness of the models [14,25]. 
All the results were placed in Tables for better 
understanding and visualization.  

 

4. Conclusions 
• Each chosen PS generated a model with 

different parameters. PS not always 
improve the quality parameters of the 
models, as accounted for pH and rancid 
flavor. 

• pH proved to be the best data set, 
considering all the accuracy factors. 
RMSEP/RMSECV ratio (0.92), RPD 
suitable for quality control, R² (95%), 
corroborating the normality contribution. 

• SNV improved validation correlation but 
decreased Rank, what could indicate some 
small characteristic being ignored in the 
TBARS model. Combining SNV with 1st 
DER and MSC, the RPD achieved potential 
for quality control. 

• The homogeneity of data proved to have a 
direct influence on the robustness, 
confirming the challenge to fit sensory 
results as rancid flavor of fish burgers in 
PLS prediction models. 

• Normality, the data distribution, affects 
directly on R2 of the calibration models. 
Despite the reliable R² of the validation 
models, they consider only 30% of the data, 
and the high content of zeros or similar 
values in the distribution, influences all the 
PS regarding calibration, while validation 
results could make it seem an accurate 
model. 

• In our study, we found good as not so 
suitable models to describe the pattern of 
fish hamburgers. We show in this work 
analyzes that can be performed on meat 
products. 
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