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Abstract: 
The purpose of this paper is to study the diffusion of silver ions, Ag+, into TiO2 nanotubes, using Fick’s second law. 
The mathematical simulations were carried out using the finite element method to solve this partial differential 
equation. A single nanotube, immersed in an aqueous solution containing Ag+ ions, composes the physical two-
dimensional model. The most relevant results show that the system final concentration can be calculated in the 
function of solution initial concentration, of solution volume and nanotube volume. The equation obtained can be 
generalized to the study of diffusion for other ions in aqueous solution through nanotubular structured materials, 
because the equation does not take into account the diffusion coefficient of the ions. The height of nanotube is 
exponentially proportional to the equilibrium time, proving the relation of height with the diffusion course. On the 
other hand, the diameter of nanotube does not have a significant relationship with the equilibrium time. These results 
indicate that for ions incorporation into materials, with nanotubular structure, it should prioritize experimental 
conditions that favor the vertical growth of the nanotubes. 
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1. Introduction 

The application of titanium and its alloys is 
extensively studied in orthopedics and 
orthodontics in the use as bone and dental 
implants [1-5]. Among the most important 
characteristics of biomaterials, for this application, 
are the biocompatibility and resistance to 
corrosion [6], guaranteed by the formation of a 
chemically inert layer of titanium dioxide on the 
metal surface [7]. In this context, the use of 
implants with nanotubular structures, such as 
TiO2NT, allows the improvement of adhesion of 
matrix proteins, which have structures in the 
nanometer scale, contributing to the 
osseointegration process [8]. 

The silver decoration of biomaterials aims to 
reduce, eliminate or prevent bacterial colonization 
and infection [9]. Materials decorated and doped 
with silver naturally release Ag+, known by 
microbial growth inhibition [10]. Knowing the 
variables that influence the incorporation of ions 
into a nanotubular structure can bring great 

advances to the area of materials surface 
modification. Before starting an experimental 
methodology, a theoretical study can bring 
relevant information and reduce the experimental 
effort. 

The diffusion of metallic cations into nanotubes 
can be studied by computer simulation using a 
versatile method, such as the finite element 
method (FEM). This method is based on the 
transformation of partial differential equations 
(PDEs) into algebraic equations [9,10] and can be 
applied to stationary and transient problems, in 
linear or nonlinear regions for a, one, two and 
three-dimensional domains [11]. That way, the 
use of the FEM, using a software, allows 
correlating the concentration distributions with the 
desired geometry.  

The diffusion simulation using the finite 
element method has already been used for 
several purposes. Rahman et al. [13] used the 
method to study the migration of chlorides into 
concrete, Cl- ions are known by damage building 
structures, O'Malley et al. [14] studied the 
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efficiency of different geometries for finite 
elements in the calculation of neutron diffusion 
and Krishnamurthy et al. [15] evaluated the 
diffusion of oxygen in cationic structures. Thus, in 
this work the diffusion of silver ions into 
nanotubular structures will be studied, utilizing 
Fick’s second law, using the finite element 
method. To reduce the complexity of the problem 
the oxide film will consist only of a nanotube 
belonging to a two-dimensional model. The 
thickness of the oxide film, the nanotube diameter 
and the size of the ion supply phase will be 
investigated.  

 

2. Results and Discussion 
Calculation of final concentration of the 
system  

The simulation results show the change in 
concentration, caused by the diffusion of Ag+ ions 
from the solution bulk into the TiO2 nanotube, is 
related to three parameters: solution area 
(equation (1)), nanotube area (equation (2)) and 
solution initial concentration. All the mathematical 
relations cited below, between these parameters 
and the concentration variation, are true for the 
conditions mentioned in section 3 (Materials and 
Methods). 

𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐻𝐻𝑠𝑠 .𝑊𝑊𝑠𝑠       (1) 

where Asol is the solution area, Hs is the height of 
solution bulk and Ws is the width of solution bulk. 

𝐴𝐴𝑛𝑛 = 𝑛𝑛.𝐻𝐻𝑛𝑛 .𝑊𝑊𝑛𝑛      (2) 

where An is the area of nanotube , n is the number 
of nanotubes, Hn is the height of a nanotube and 
Wn is the width of the nanotube. 

For different values of solution initial 
concentration, the ratio Δc/c is constant: 

∆𝑐𝑐 ∝ 𝑐𝑐  (3) 

where Δc is the concentration variation of the 
system and c is the initial concentration of the 
solution. 

In terms of diffusion, an increase in the initial 
concentration of the system raises the gradient 
intensity existent between the solution 
concentration in the bulk and the solution inside 
the nanotube, which has zero concentration. In 
this way, the silver ions will diffuse more strongly 

and in more quantity to the nanotube, leading to a 
greater concentration variation.  

The concentration change, Δc, is inversely 
proportional to the solution area, Asol: 

∆𝑐𝑐 ∝  1
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠

   (4) 

This correlation reflects that for large values of 
solution area, the concentration variation is 
smaller. This finding can be explained in terms of 
ratio R defined in equation (5). In a larger solution 
area, a smaller amount of diffused ions is required 
for the nanotube, about to total amount, so that 
the concentration of the system is homogeneous. 
That is, for smaller values of R and, consequently, 
higher Asol the concentration variation becomes 
larger. 

𝑅𝑅 =
𝑞𝑞𝑑𝑑𝑑𝑑𝑑𝑑
𝑞𝑞𝑡𝑡𝑠𝑠𝑡𝑡

     (5) 

where R is the ratio between diffused and total 
ions, qdif is the amount of diffused ions into the 
nanotube and qtot is the amount of total ions 
presents in system.  

To determine the proportionality between the 
nanotube area and the concentration variation, it 
is necessary to change both the diameter and 
height of the nanotube and the number of 
nanotubes. In addition, it is pertinent to evaluate if 
the parameters mentioned above do not affect this 
relation. For this, thirteen sets of simulations are 
performed, described in Table 1. The results are 
expressed in the form of straight equations 
obtained by linear regression. 

Each set represent ten simulations performed 
according to the parameters above and varying 
the size quoted. Therefore, the proportionality 
between the nanotube area (An) and the 
concentration change (Δc) is: 

∆𝑐𝑐 ∝ 𝐴𝐴𝑛𝑛      (6) 

Observing the set of similar simulations, which 
were performed for one and two nanotubes, it is 
possible to conclude that it is the area of nanotube 
that influences the variation of the concentration 
of the system, regardless of the amount of 
nanotubes. 

An increase in the nanotube area causes an 
increase in the ratio R, that is, more ions are 
diffused into the interior of the nanotube in relation 
to the total amount of ions. In this way, there is an 
increase in the concentration variation.  
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Table 1. Detail of the simulation sets. 
Nº Amount of 

nanotubes 
c (mol.L-1) Variable 

dimension 
Asol (µm2) Equation of the line 

1 1 0.250 Hn 4000 Δc = 0.062x10-3An 
2 1 0.250 Wn 4000 Δc = 0.063x10-3An + 0.001x10-3 
3 1 0.500 Hn 4000 Δc = 0.125x10-3An + 0.001x10-3 
4 1 0.500 Wn 4000 Δc = 0.126x10-3An - 0.001x10-3 
5 2 0.500 Hn 4000 Δc = 0.062x10-3An 
6 2 0.250 Wn 4000 Δc = 0.062x10-3An 
7 2 0.500 Hn 4000 Δc = 0.125x10-3An - 0.001x10-3 
8 2 0.500 Wn 4000 Δc = 0.125x10-3An - 0.001x10-3 
9 1 0.250 Hn 1000 Δc = 0.248x10-3An + 0.003x10-3 

10 1 0.250 Hn 3000 Δc = 0.083x10-3An + 0.004x10-3 
11 1 0.250 Hn 5000 Δc = 0.050x10-3An 
12 1 0.250 Hn 10000 Δc = 0.025x10-3An 
13 1 0.250 Hn 20000 Δc = 0.012x10-3An 

 

Considering all the proportionalities identified, 
it can be write the following mathematical relation:  

∆𝑐𝑐 = 𝑎𝑎 𝐴𝐴𝑛𝑛𝑐𝑐
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠

       (7) 

Where the concentration variation is defined 
according to equation (8): 

∆𝑐𝑐 = 𝑐𝑐 − 𝑐𝑐𝑓𝑓       (8) 

where Δc is the change in concentration, c is the 
initial concentration of the solution and cf is the 

final concentration of the system. 

 Substituting equation (8) into equation 
(7), and isolating cf, the following mathematical 
function is obtained: 

𝑐𝑐𝑓𝑓 = − 𝑎𝑎 𝐴𝐴𝑛𝑛𝑐𝑐
𝐴𝐴𝑠𝑠𝑠𝑠𝑠𝑠

+ 𝑐𝑐        (9) 

Performing linear regression again, but now 
using equation (9), where x = An.c/Asol and y = cf, 
the following results are obtained (Table 2): 

 

Table 2. Equations parameters obtained through equation (9). 
Nº c (mol.L-1) Asol (µm2) Equation 
1 0.250 4000 cf  = - 0.997Anc/Asol + 0.250 
2 0.250 4000 cf  = - 1.010Anc/Asol + 0.250 
3 0.500 4000 cf  = - 0.998Anc/Asol + 0.500 
4 0.500 4000 cf  = - 1.009Anc/Asol + 0.500 
5 0.250 4000 cf  = - 0.998.Anc/Asol + 0.250 
6 0.250 4000 cf  = - 1.000.Anc/Asol + 0.250 
7 0.500 4000 cf  = - 1.001.Anc/Asol + 0.500 
8 0.500 4000 cf  = - 1.003.Anc/Asol + 0.500 
9 0.250 1000 cf  = - 0.992.Anc/Asol + 0.250 
10 0.250 3000 cf  = - 0.997.Anc/Asol + 0.250 
11 0.250 5000 cf  = - 0.999.Anc/Asol + 0.250 
12 0.250 10000 cf  = - 0.999.Anc/Asol + 0.250 
13 0.250 20000 cf  = - 1.000.Anc/Asol + 0.250 

 

The value of the constant a is 1,000, obtained 
through the average of the angular coefficients of 
the equations of Table 2. Applying this value in 
equation (9) and showing the initial concentration, 
the following equation is obtained: 

𝒄𝒄𝒇𝒇 = 𝒄𝒄(𝟏𝟏 −  𝑨𝑨𝒏𝒏
𝑨𝑨𝒔𝒔𝒔𝒔𝒔𝒔

)  (10) 

Considering a tridimensional model, where all 
TiO2 nanotubes have the same dimensions, the 
equation (10) can be generalized to a more 

realistic model, this way: 

𝑐𝑐𝑓𝑓 = 𝑐𝑐(1 − 𝑉𝑉𝑛𝑛
𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠

)     (11) 

where cf is the final concentration of the system, c 
is the initial concentration of the solution, Vn is the 
nanotube volume, considering a cylindrical 
geometry (equation (12)), and Vsol is the solution 
volume. 

𝑉𝑉𝑛𝑛 = 1
4
𝜋𝜋.𝑛𝑛.𝐻𝐻𝑛𝑛 .𝑊𝑊𝑛𝑛

2 (12) 
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where n is the number of nanotubes (equation 
(13)), Hn is the height of a nanotube and Wn is the 
diameter of a nanotube. 

𝑛𝑛 = 𝜇𝜇.𝐴𝐴  (13) 

where µ is the amount of nanotube per area of 
TiO2, given in m-2, and A is the surface area of the 
oxide, given in m2. 

 

The dilution equation 

The simulation of the diffusion phenomenon of 
Ag+ cations gives concentration data as a function 
of time, which allows to relate how the solution 
area, the initial solution concentration and the 
nanotube area affect the final concentration of the 
system. However, this correlation can be 
analyzed through the dilution phenomenon, and 
its respective equation (equation (14)). In terms of 
the dilution, the solution containing Ag+ in the bulk 
is diluted by the solution with zero concentration 
inside the nanotube. 

𝑐𝑐𝑖𝑖 .𝑉𝑉𝑖𝑖 = 𝑐𝑐𝑓𝑓 .𝑉𝑉𝑓𝑓  (14) 

where ci is the initial concentration of solution, Vi 
is the initial volume of the solution, cf is the final 
concentration and Vf is the final volume. 

In a two-dimensional system, ci is the 
concentration of solution (c), Vi can be replaced 
by the area of solution (Asol), cf is the final 
concentration of the system (cf) and Vf is the sum 
of the solution area (Asol) with the area of solution 
inside the nanotube (An). Substituting these 
variables into (equation (14)) and isolating cf, the 
following equation is obtained: 

𝒄𝒄𝒇𝒇 = 𝒄𝒄( 𝑨𝑨𝒔𝒔𝒔𝒔𝒔𝒔
𝑨𝑨𝒔𝒔𝒔𝒔𝒔𝒔+𝑨𝑨𝒏𝒏

) (15) 

Comparing the final concentration, cf1, 
calculated by obtained equation (equation (10)) 
and the final concentration, cf2, calculated by 
dilution equation (equation (15)), it is observed 
that the difference between the concentration 
calculated with the two equations is low. The 
results are represented in Table 3 for different 
values of nanotube area, and in Table 4 of 
different values of solution area. 

 

Table 3.  Comparison between the final concentrations calculated from the equation obtained and to 
the dilution equation for different values of An. 

An (µm2) Asol (µm2) cf1 (mol.L-1) cf2 (mol.L-1) difference 

0.7 4000 249.9563x10-3 249.9563x10-3 0.0 
1.4 4000 249.9125x10-3 249.9125x10-3 0.0 
2.1 4000 249.8688x10-3 249.8688x10-3 0.0 
2.8 4000 249.8250x10-3 249.8251x10-3 1x10-07 
3.5 4000 249.7813x10-3 249.7814x10-3 1x10-07 
4.2 4000 249.7375x10-3 249.7378x10-3 3x10-07 
4.9 4000 249.6938x10-3 249.6941x10-3 3x10-07 
5.6 4000 249.6500x10-3 249.6505x10-3 5x10-07 
6.3 4000 249.6063x10-3 249.6069x10-3 6x10-07 
7.0 4000 249.5625x10-3 249.5633x10-3 8x10-04 

Table 4. Comparison between the final concentrations calculated from the equation obtained and to the 
dilution equation for different values of An. 

An (µm2) Asol (µm2) cf1 (mol.L-1) cf2 (mol.L-1) difference 

3.5 1000 249.1250x10-3 249.1280x10-3 3x10-06 
3.5 3000 249.7083x10-3 249.7086x10-3 3x10-07 
3.5 5000 249.8250x10-3 249.8251x10-3 2x10-07 
3.5 10000 249.9125x10-3 249.9125x10-3 0.0 
3.5 20000 249.9563x10-3 249.9563x10-3 0.0 
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The increase in the nanotube area, as well as, 
decrease in the solution area, leads to an increase 
in the difference between the final concentrations 
calculated with each equation. That is, the higher 
the An/Asol ratio, the greater the difference of 
calculated values. This confirmation is in 
agreement with the observed experimentally, 
considering that the volume of solution is always 
higher, in order of magnitude, to the volume of 
nanotubes. 

 

Influence of nanotube’s height and diameter 
on diffusion 

To discuss the influence of both the diameter 
and the height of the nanotube on the diffusion of 
silver cations, it is necessary to define a time 
parameter. The equilibrium time, teq, is defined as 
the time required for the net velocity to be zero, 
according to the derivative of the graphs c versus 
t plotted during the simulations (Figure 1). 

 

 
Figure 1. Graph of the concentration as a 

function of time on the bottom of the nanotube, 
indicating the points (teq, cf) e (t0, c), where teq is 

the defined time parameter, cf is the final 
concentration of the system, t0 is the initial time 

and c is the initial concentration ate the bottom of 
the nanotube. 

 
The higher the nanotube, the longer the time 

required for the concentration of the system to be 
constant, and consequently the longer the time teq. 
This is because the distance to the base of the 
nanotube becomes bigger, increasing the time 
required for the Ag+ to diffuse into the less 
concentrated region. Figure 2 shows the time teq 
for different heights of nanotube. 

The figure above shows that the equilibrium 
time is exponentially proportional to the height of 

the nanotube, indicating that the time for diffusion 
to occur completely is gradually larger for large 
values of height. This same relation is evidenced 
in the curves of the concentration at the bottom of 
the nanotube as a function of time for different 
height values also show the influence of height in 
the diffusion (Figure 3). 

Differently from what is observed for different 
heights of nanotube, an increase in the diameter 
does not entail a significant change in the curve c 
versus t, that is, the value of the diameter does not 
interfere in the diffusion of silver ions into the 
interior of the nanotube. This can be seen in the 
graph of Figure 4. 

 
 

 
Figure 2. Graph of the time teq as a function of 

height of nanotube, where a, b and c are 
constants. 

 
 
 

 
Figure 3. Graph of Ag+ concentration at the 

bottom of the nanotube as a function of time for 
different heights of nanotube.  
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Figure 4. Graph of Ag+ concentration at the 
bottom of the nanotube as a function of time for 

different diameters of nanotube. 

 

3. Material and Methods 
A nanotube, the TiO2 layer and the aqueous 

solution containing Ag+ ions represent the two-
dimensional domain (Figure 5). Nanotubes are 
formed during the anodization process, by the 
evolution of metastable pores into TiO2 oxide. The 
formation of nanotubes occurs by the attack of 
fluoride ions on the oxide barrier layer [16]. The 
barrier layer is formed by the anodization process 
and because it is compact [16], it does not 
interfere in the diffusion process of the ions that 
will be considered in this work. For the 
incorporation of silver ions, it is considered that a 
nanotubular film, after the anodizing process, is 
submerged in a solution containing a known 
concentration of silver ions. In this work, the ionic 
solution will be called bulk. For the purpose of 
implementing the physical model, a two-
dimensional model was considered where the 
height and width of the solution are given by Hs 
and Ws, respectively, and the height and diameter 
of nanotube are represented, respectively, by Hn 
and Wn.  

The commercial software Comsol 
Multiphysics® was used to perform the 
simulations using the finite element method, as 
well as for the construction of the two-dimensional 
model. The mesh is made up of finite triangular 
elements, and is refined in the region where the 
nanotube is located (Figure 6), because in this 
region there is an accelerated change of 
concentration [17]. 

For calculation purposes, the interior of the 
nanotube has zero concentration and the bulk 

solution concentration may assume any constant 
value other than zero. In addition, all boundaries 
presented, except at the top of the nanotube, do 
not allow flow of matter. 

 

 
Figure 5. 2D model representing the solution of 
Ag+, a TiO2 nanotube and the TiO2 barrier film, 
where (a) represents the entire domain, and (b) 

is an enlargement of the region where the 
nanotube is located. 

 

 
Figure 6. Finite element mesh plotted on the 

geometric model. 
 

For the construction of the mathematical 
model of diffusion, the Einstein relation (equation 
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(16)) was used to determine the diffusion 
coefficient of Ag+ ions in aqueous solution. This 
constant is a necessary parameter for the Fick’s 
second law (equation (17)).  

𝐷𝐷 = 𝑢𝑢𝑢𝑢𝑢𝑢
𝑧𝑧𝑧𝑧

  (16) 

where D is the diffusion coefficient, u is the ionic 
mobility, R is the gas constant, T is the 
temperature, z is the ion charge and F is the 

Faraday constant. 
𝜕𝜕𝑐𝑐
𝜕𝜕𝜕𝜕

= ∇ ∙ (𝐷𝐷∇𝑐𝑐)   (17) 

 The concentration at any point in the 
domain is calculated by this partial differential 
equation using the finite element method. The 
simulations were carried out using the 
parameters, constants and variables, described in 
Table 5. 

 

Table 5. Description of the parameters used during the simulations. 
Name (symbol) Classification Minimum value; interval; 

maximum value [unit] 
Height of solution bulk (Hs) Variable 10; 10; 100 e 100; 50; 600 [µm] 

Height of nanotube (Hn) Variable 10; 10; 150 [µm] 
Diffusion coefficient of Ag+(aq) (D) Constant 1.603x10-9 [m2/s] 
Initial concentration of solution (c) Variable 0.05; 0.05; 0.50 [mol.L-1] 

Diameter of nanotube (Wn) Variable 0.07; 0.07; 0.7 [µm] 
Width of solution bulk (Ws) Variable 50; 50; 150 [µm] 

Temperature (T) Constant  298.15 [K] 
Simulation time (t) Constant 20 [s] 

 

In order to obtain the proportional mathematics 
presented in section 2 (Results and Discussion), 
the simulations are performed with all fixed 
parameters, except one, in which one is 
interested. This procedure was repeated for all the 
variable parameters mentioned in the Table 5 
above. 

 

4. Conclusions 
Using a simple two-dimensional model, it was 

possible to determine which variables are directly 
involved in the change of the Ag+ concentration. 
The concentration change is caused by the 
diffusion of these ions from the bulk into the 
nanotube. The connection of the studies carried 
out leads to a mathematical relationship that 
calculates the final concentration as a function of 
the initial solution concentration, the solution 
volume, and the nanotube volume. 

The analysis of the problem through two 
distinct phenomena, diffusion and dilution, shows 
that the mathematical data are close. This is 
evidenced when comparing the results calculated 
by the mathematical equation obtained and the 
dilution equation. The difference of the calculated 
final concentration between the two equations is 
minimal for An/Asol ratios, that is, for large values 
of solution area and small values of nanotube 

area. This result shows the spatial domain of the 
simulation performed should be carefully 
delimited to minimize such errors. 

The mathematical relationship found may 
apply to real situations when extrapolated to three 
dimensions. The generality can also be covered 
for the study of diffusion of other ions in any 
material with nanotubular structure, because, the 
equation does not take into account the diffusion 
coefficient of the material. 

The height of the nanotube, unlike the 
diameter, is directly related to the time required for 
the concentration of the system to be constant, tc, 

that is, the complete diffusion of the ions into the 
nanotube is slower for larger heights. This result 
shows that for the incorporation of chemical 
species into materials with nanotubular structure, 
the experimental conditions that favor the vertical 
growth of the nanotubes must be considered. 

It is important to emphasize that this study 
considers only the concentration change caused 
by diffusion. The adsorption phenomenon of the 
silver ions in the nanotubular material was not 
considered, new studies must be carried out to 
implement this phenomenon. 
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