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Abstract: 
In this revision, I provide a brief and pedagogical introduction to the relation of phase transitions and the zeros of 
the statistical mechanical partition function. 
 
Keywords: phase transitions; statistical mechanics; partition function; zeros of polynomials 
 

1. Introduction 

First of all, I would like to thank the opportunity 
to present these notes. In particular, I wish to 
thank the 1st Multidisciplinary Symposium in 
Materials of the Brazilian Central West to give me 
the challenge to talk to a much diverse audience. 
This symposium is relevant to promote a cross-
pollination between the various areas that 
contribute to the science of materials. In this spirit, 
I believe that disclosing modern methods used by 
physicists and mathematicians in the study of the 
phase transition phenomena is of particular 
relevance. Phase transitions are everywhere in 
science. Boiling of water, denaturation of a 
protein, or formation of a percolation cluster in a 
random graph are examples of phase transitions. 
The key idea is that at each “phase”, the system 
has uniform physical properties. During a phase 
transition certain properties of the system change, 
often discontinuously, as a result of the change of 
some external condition, such as temperature, 
pressure, or others. A prototypical example of a 
phase transition is the liquid-gas transition. 
Crossing the coexistence curve, by varying e.g., 
the temperature, one can move between vapor 
and liquid phases. The study of phase transitions 
is of great interest due to both its practical 
importance and theoretical richness. The rigorous 
mathematical understanding of the phase 
transition phenomena is the holy grail of 

thermodynamics with implications in almost all 
areas of natural sciences. 

Let 𝑘𝑘 denote the Boltzmann constant and 𝛽𝛽 =
1/𝑘𝑘𝑘𝑘 to be the inverse temperature. 
Mathematically, we say that a system with free 
energy 𝑓𝑓(𝛽𝛽,𝑋𝑋) (where 𝑋𝑋 denote the other relevant 
parameters) undergoes a phase transition if some 
derivative of 𝑓𝑓 becomes ill-defined at some point 
(𝛽𝛽,𝑋𝑋). Paul Ehrenfest classified phase transitions 
based on the behavior of the (density of) free 
energy 𝑓𝑓 as a function of other thermodynamic 
variables (see ref. [1]). Under this scheme, a 
phase transition was labeled by the lowest 
derivative of 𝑓𝑓 that is discontinuous at the 
transition. First-order (or discontinuous) phase 
transitions exhibit a discontinuity in the first 
derivative of 𝑓𝑓 with respect to some 
thermodynamic variable. For instance, the various 
liquid-gas transitions are classified as first-order 
transitions because they involve a discontinuous 
change in density, which is the (inverse of the) first 
derivative of 𝑓𝑓 with respect to pressure. The open-
closed transition of the molecular zipper (see [2]) 
is also a first order phase transition. Second-order 
phase transitions are continuous in the first 
derivative (the order parameter, which is the first 
derivative of the free energy with respect to the 
external field, is continuous across the transition) 
but exhibit discontinuity in a second derivative of 
the free energy. Examples of second order phase 
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transition include the ferromagnetic phase 
transition in materials such as iron, where the 
magnetization, which is the first derivative of 𝑓𝑓 
with respect to the applied magnetic field strength, 
increases continuously from zero as the 
temperature is lowered below the so-called the 
Curie temperature [3]. In this case, the magnetic 
susceptibility, the second derivative of the free 
energy with respect to the external field, changes 
discontinuously. Under the Ehrenfest 
classification scheme, there could in principle be 
third, fourth, and higher-order phase transitions 
which correspond to discontinuities on high order 
derivatives of 𝑓𝑓. For example, I will argue 
atsection 4.3 that the Berezinskii-Kosterlitz-
Thouless transition (BKT transition, see [4]) is an 
infinity order phase transition.  

The connection between the microscopic 
mechanical properties and the macroscopic 
thermodynamic properties of the system are the 
object of study the Statistical Physics. In these 
notes, I will consider physical systems that are in 
thermal equilibrium with its environment. This 
means that our system and its vicinity (the energy 
reservoir) will be allowed to exchange energy 
between them. But the vicinity of our system will 
be assumed to be in some sense big enough so 
that the energy it gives or receives from the 
system will not change the reservoir, which will be 
characterized by a quantity that we call 
temperature 𝑘𝑘. So, we are saying that the typical 
variation of energy of our system will be small 
enough in comparison to the energy required to 
change the temperature of its surroundings. For 
simplicity, let 𝑠𝑠 =  {𝑠𝑠1, 𝑠𝑠2,⋯  , 𝑠𝑠𝑁𝑁} be the set of 
possible microstates of our system. The first issue 
in a statistical mechanics problem is to obtain 𝑝𝑝𝑛𝑛 
the probability of finding the system in the state 𝑠𝑠𝑛𝑛. 
Such the probability distribution 𝑝𝑝1,··· , 𝑝𝑝𝑁𝑁 must 
satisfy the following conditions: 

�𝑝𝑝𝑛𝑛 = 1, �𝐸𝐸𝑛𝑛𝑝𝑝𝑛𝑛 = 𝐸𝐸
𝑁𝑁

𝑛𝑛=1

𝑁𝑁

𝑛𝑛=1

 

where 𝐸𝐸𝐸𝐸 is the energy of the microstate 𝑠𝑠𝑛𝑛 and 𝐸𝐸 
is the expectation value of the energy of the 
system, which is constant since we are 
considering that the system is in equilibrium. 
Furthermore, the probability distribution must 
maximize the statistical entropy of such 
distribution, i.e. 

𝑆𝑆(𝑝𝑝1,⋯ , 𝑝𝑝𝑛𝑛) = −𝑘𝑘 �𝑝𝑝𝑛𝑛 ln𝑝𝑝𝑛𝑛

𝑁𝑁

𝑛𝑛=1

 

These requirements implies that (see ref. [5] for 
more details) 

𝑝𝑝𝑛𝑛 =  
𝑒𝑒
−𝐸𝐸𝑛𝑛
𝑘𝑘𝑘𝑘

𝑍𝑍
≡
𝑒𝑒−𝛽𝛽𝐸𝐸𝑛𝑛

𝑍𝑍
  

where 𝑍𝑍 is the so called partition function, which 
is given by 

𝑍𝑍 = �𝑒𝑒−𝛽𝛽𝐸𝐸𝑛𝑛
𝑁𝑁

𝑛𝑛=1

 

The partition function 𝑍𝑍  is a central object in 
(equilibrium) statistical mechanics and one of the 
most important objects in these notes. It encodes 
how the probabilities are partitioned among the 
microstates and actually allow us to calculate all 
the thermodynamic properties of the system (see 
Supporting Information). 

Around 1950, providing a microscopic 
description of first- and second-order phase 
transitions became a true challenge that 
culminated in the development of various 
mathematical and computational techniques such 
as scaling theories and then renormalization 
group methods [6]. Although these techniques are 
computationally very effective in giving the critical 
point where the phase transition occurs, they fail 
to explain many important aspects of the phase 
transition phenomena. Specially, it is not clear 
how the (density of) free energy f can develop 
singularities at the first-order phase transitions, 
since, at finite volume, 𝑓𝑓𝑁𝑁 ∝ ln𝑍𝑍𝑁𝑁, and 𝑍𝑍𝑁𝑁 is a sum 
of non-negative analytic functions. To address this 
problem, we will follow the ideas introduced by 
Lee and Yang and treat the partition function as a 
function of some complex control parameter (see 
refs. [7] and [8]). Here in particular, we consider 
complex temperatures following the prescription 
introduced by M. Fisher (see ref [9]). Singularities 
of the free energy (or others thermodynamic 
potentials), are given by the zeros of the partition 
function. At the thermodynamic limit, it is possible 
that those zeros accumulate at the physical 
transition point. This approach, that was later on 
generalized and extended to various systems, 
provides a lot of information about equilibrium 
phase transitions. To be more precise, if the 
function 𝜌𝜌(𝑥𝑥, 𝑦𝑦) denote the density of (complex) 
zeros of the partition function, then the partition 
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function 𝑍𝑍 is a functional of 𝜌𝜌 and therefore every 
(equilibrium) thermodynamic property of the 
system is also a functional of 𝜌𝜌.  

For practical and pedagogical purposes these 
notes are organized as follows. In section 2, we 
analyze a simple example of a physical system 
that undergoes a phase transition; we explicitly 
obtain the partition function for this system, show 
the existence of the phase transition and calculate 
the corresponding critical temperature. In section 
3, we present a brief but self-contained exposition 
of the relationship of zeros of a partition function 
to the phase transitions of the system it describes. 
In particular, we have constructed an analogy 
between two-dimensional electrostatics and the 
thermodynamic properties of the system. In this 
analogy, the role of electric charges is played by 
the zeros of the partition function. In section 4, we 
use this analogy to characterize the nature of the 
critical point. In section 5, we discuss the key 
ideas used to implement this strategy to 
numerically obtain the critical temperature. We 
reserve section 6 to final comments. 

 

2. A Simple Example: The Molecular 
Zipper 

The so-called Molecular Zipper is a simple 
statistical physics model of the unraveling of a 
long chain of links (used as a toy model for DNA). 
The model became quite popular since it balances 
a great and interesting deal of physics with 
relatively simple calculations. The model was 
proposed in [2] and was one of the first one-
dimensional models that exhibit a phase 
transition. 

Suppose that a zipper in equilibrium with a 
heat bath (inverse temperature 𝛽𝛽) has 𝑁𝑁 links. 
Each link can be closed with energy 0 or open with 
energy 𝜖𝜖 (this corresponds to the chemical energy 
necessary to open that link). The zipper can only 
unzip from one end and the final link can never be 
open (shown as a thick black square on the right 
side of Figure 1 below). This prevents the zipper 
from disconnecting and drifting apart. The 𝑘𝑘 −th 
link can only open if all links before it are also 
open(1,2,··· , 𝑘𝑘 −  2, 𝑘𝑘 −  1). When a link is closed 
there is only one possible configuration, however, 
when the link is open, the two pieces of the link 
are free to spin around and assume 𝐺𝐺 different 
positions. We say that an open link has a 

degeneracy 𝐺𝐺. The orientation of the link does not 
change the energy stored in the link, so these 
setups all have the same energy. 

 

 
Figure 1. The Single Ended Molecular Zipper. 

 

Let 𝜎𝜎 =  (𝜎𝜎1 ,𝜎𝜎2,⋯ ,𝜎𝜎𝑁𝑁), such that 𝜎𝜎𝑘𝑘 =  0 if the 
𝑘𝑘-th link is closed and 𝜎𝜎𝑘𝑘 ∈  {1,··· ,𝐺𝐺} if the link is 
open. The “rules” of our zipper, also, impose that 
if 𝜎𝜎𝑘𝑘 =  0 then 𝜎𝜎𝑘𝑘+1 =  0. Imposing that the final 
link is always closed means that 𝜎𝜎𝑁𝑁  =  0. Each 𝜎𝜎 
describes a distinct configuration or microstate of 
the zipper. Due to the restricted way that the chain 
of 𝑁𝑁 links can unravel, it can only be in certain 
specific energy states. In fact, if the first 𝐸𝐸 links are 
open, then the total energy of the system is equal 
to 𝐸𝐸𝑛𝑛 =  𝐸𝐸𝜖𝜖. Also, there are 𝐺𝐺𝑘𝑘distinct 
configurations with energy 𝑘𝑘𝜖𝜖. Therefore, the 
partition function of this model is given by 

𝑍𝑍𝑁𝑁 =  �𝑒𝑒−𝛽𝛽𝐸𝐸(𝜎𝜎)

𝜎𝜎

= � � 𝑒𝑒−𝛽𝛽𝐸𝐸(𝜎𝜎)

{𝜎𝜎:𝐸𝐸(𝜎𝜎)=𝑛𝑛𝑛𝑛}   

𝑁𝑁−1

𝑛𝑛=0

= �𝐺𝐺𝑛𝑛𝑒𝑒−𝛽𝛽𝑛𝑛𝑛𝑛 .
𝑁𝑁−1

𝑛𝑛=0

 

(1) 

For simplicity, let 𝑧𝑧 =  𝐺𝐺𝑒𝑒−𝛽𝛽𝑛𝑛 , so our partition 
function becomes a polynomial in 𝑧𝑧: 

𝑍𝑍𝑁𝑁 = �𝑧𝑧𝑛𝑛
𝑁𝑁−1

𝑛𝑛=0

= 1 + 𝑧𝑧 + ⋯+ 𝑧𝑧𝑁𝑁−1. 

Now, note that the partition function is just a 
geometric series and therefore 

𝑍𝑍𝑁𝑁 =  1−𝑧𝑧
𝑁𝑁

1−𝑧𝑧
. (2) 

Now, the average fraction of open links is given by 

𝜌𝜌�𝑁𝑁(𝑧𝑧) = 〈𝑛𝑛〉
𝑁𝑁

= ∑ 𝑛𝑛 𝑝𝑝𝑛𝑛𝑛𝑛
𝑁𝑁

= ∑ 𝑛𝑛𝑧𝑧𝑛𝑛𝑛𝑛
𝑁𝑁𝑍𝑍𝑁𝑁

= 𝑧𝑧
𝑁𝑁
𝑑𝑑 ln 𝑍𝑍𝑁𝑁 
𝑑𝑑𝑧𝑧

. (3) 

This leads to 

𝜌𝜌�𝑁𝑁(𝑧𝑧) =  
1
𝑁𝑁

𝑧𝑧
1 − 𝑧𝑧

−
𝑧𝑧𝑁𝑁

1 − 𝑧𝑧𝑁𝑁
. 
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Figure 2. The average fraction of open links for a 

Molecular Zipper with 𝑁𝑁 =  10,25,50,100 links. 
 
 

 
Figure 3. The average fraction of open links for 

an infinite long Zipper. 
 

In Figure 2, we see how the average fraction 
of open links behaves as a function of 𝑧𝑧 =  𝐺𝐺𝑒𝑒−𝛽𝛽𝑛𝑛 
for different sizes of the Zipper (𝑁𝑁). We notice that 
the behavior changes when 𝑧𝑧 approaches 1. In 
addition, this change of behavior becomes more 
pronounced as N becomes larger. The limit 𝑁𝑁 →
 +∞ is called thermodynamic limit, we find that 

 

We can see how  𝜌𝜌�(𝑧𝑧), the “density” of open links 
in an infinity long zipper, behaves as a function of 
𝑧𝑧 in Figure 3. Note that for 𝑧𝑧 <  1 almost all links 
are closed, while for 𝑧𝑧 >  1 almost all links are 
open. We can say that 𝑧𝑧 =  1 separates two very 
distinct behaviors: the open phase and the closed 
phase of the zipper. That is a phase transition. 

To continue our investigation, we now calculate 
the free energy of the zipper. The free energy per 
link is given by 

𝑓𝑓𝑁𝑁(𝑧𝑧) =
1
𝑁𝑁𝛽𝛽

ln𝑍𝑍𝑁𝑁 =  
1
𝑁𝑁𝛽𝛽

(ln|𝑧𝑧𝑁𝑁 − 1| − ln|𝑧𝑧 − 1| ) 

As 𝑁𝑁 →  +∞,𝑓𝑓𝑁𝑁 →  𝑓𝑓, which is given by 

 

The behavior of the free energy as a function 
of 𝑧𝑧 is shown in the Figure 4 bellow. 

 

 
 

 
Figure 4. (a) Free energy per link for a Zipper with 𝑁𝑁 =  10,25,50,100 links. (b) Free energy per link for 

a Zipper in the thermodynamic limit (𝑁𝑁 → +∞). 
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Note that at the critical point z = 1, the behavior 
of 𝑑𝑑𝑓𝑓/𝑑𝑑𝑧𝑧 abruptly changes. Of course, following 
our discussion on the previous section and from 
eq.3, the singular behavior of 𝑓𝑓 at 𝑧𝑧 =  1 leads to 
the discontinuous change of 𝜌𝜌�(𝑧𝑧) at the same 
point. Roughly speaking, for 𝑧𝑧 <  1 (low 
temperatures) the Zipper is using energy to break 
its bonds (and therefore raising its entropy). When 
𝑧𝑧 =  1 Zipper “melts”, i.e. all its links suddenly 
open. From 𝑧𝑧 >  1 (high temperatures) the energy 
becomes available for other uses. 

We should take a minute here to ask if both 
𝑧𝑧 < 1 and 𝑧𝑧 >  1 are physically acceptable 
situations. It quite important to stress that the 
degeneracy 𝐺𝐺 ≥  2 implies that the situation 𝑧𝑧 =
 𝐺𝐺𝑒𝑒−𝛽𝛽𝑛𝑛 ≥ 1 can be obtained. In fact, in the real 
world, we cannot control 𝐺𝐺 or 𝜖𝜖; they are fixed 
values for a given molecular zipper. However, we 
can control the temperature of the heat bath 𝑘𝑘. So 
the critical situation occurs when 

ln𝐺𝐺 =  𝛽𝛽𝑐𝑐𝜖𝜖 ⟺ 𝑘𝑘𝑐𝑐 =
𝜖𝜖

𝑘𝑘 ln𝐺𝐺 
. 

So, for 𝐺𝐺 ≥  2, we can observe a change from the 
“closed phase” (for small temperatures) to the 
“open phase” (high temperatures). In this situation 
at the critical temperature 𝑘𝑘𝑐𝑐 the molecule melts, 
i.e. almost all links suddenly open. This is a first 
order phase transition. Since the entropy (per link) 
𝑠𝑠 of the system is given by 𝜕𝜕𝜕𝜕

𝜕𝜕𝑘𝑘
 (see the Appendix), 

then ∆𝐿𝐿 the (specific) latent heat is given by 

Δ𝐿𝐿 = 𝑘𝑘𝑐𝑐�𝑠𝑠(𝑘𝑘𝑐𝑐+) − 𝑠𝑠(𝑘𝑘𝑐𝑐−)� = 𝑘𝑘𝑘𝑘𝑐𝑐 ln𝐺𝐺 = 𝜖𝜖 

Now, we continue our analysis by noting that 
any singular behavior of 𝑓𝑓𝑁𝑁 ∝ ln𝑍𝑍𝑁𝑁 must be 
associated with the zeros of the partition function 
𝑍𝑍𝑁𝑁. Analyzing the zeros of 𝑍𝑍𝑁𝑁, we first note that 
𝑧𝑧 =  1 is not a zero since 𝑍𝑍𝑁𝑁(1)  =  𝑁𝑁, so the 
zeros are given by 

𝑧𝑧 = 𝑒𝑒2𝜋𝜋𝜋𝜋
𝑛𝑛
𝑁𝑁. 

That means the zeros lie on the unit circle. As 
𝑁𝑁 → +∞, all 𝑧𝑧 =  𝑒𝑒2𝜋𝜋 𝛼𝛼𝜋𝜋 with 𝛼𝛼 a rational number 
between 0 and 1, will be a zero. The distribution 
of the zeros of 𝑍𝑍𝑁𝑁 and the distribution in the 
thermodynamic limit are shown in Figure 5. 

At the thermodynamic limit the zeros 
accumulate around the critical point 𝑧𝑧 =  1, 
leading to the phase transition. Also, for |𝑧𝑧|  <  1, 
we have 

𝑍𝑍𝑁𝑁 →
1

1 − 𝑧𝑧
 

as 𝑁𝑁 →  +∞, the behavior 𝜌𝜌�(𝑧𝑧)  =  0 will hold for 
all complex 𝑧𝑧 inside the unit circle. Outside the unit 
circle, i.e. for |𝑧𝑧|  >  1, 𝜌𝜌�𝑁𝑁 asymptotically grows as  

𝜌𝜌�𝑁𝑁 →
𝑧𝑧𝑁𝑁

𝑧𝑧𝑁𝑁 − 1 
≠ 0. 

So, the limit distributions of zeros (i.e. the unit 
circle) establish a boundary between the two 
phases. In the next section, we will develop these 
ideas in a more general context. 

 

 
Figure 5. The distribution of the zeros of the 

partition function of the Molecular Zipper: (a)N = 
10 links. (b) N = 50 links. (c) N = 100 links (d) 

Thermodynamic Limit. 

 

3. Zeros of the Partition Function 
In this section we examine the relationship of 

zeros of a partition function to the phase 
transitions of the system it describes. We try to 
present a brief but self-contained exposition of the 
fundamental ideas, but the whole topic is quite 
large. For a more detailed and mathematically 
rigorous presentation, we suggest ref. [10]. 

Here, we assume that the energies of the 
microstates of the system are discrete and given 
by 𝐸𝐸𝑛𝑛 = 𝜖𝜖0 +  𝜖𝜖𝐸𝐸, where 𝜖𝜖0 is the ground state 
energy and 𝜖𝜖 is the lowest energy difference. 
Without loss of generality the ground state energy 
can be taken to be 𝜖𝜖0  =  0. So the partition 
function can be written as a polynomial in some 
variable 𝑧𝑧, 
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𝑃𝑃𝑁𝑁(𝑧𝑧) =  𝑎𝑎0 + 𝑎𝑎1𝑧𝑧 + ⋯+ 𝑎𝑎𝑁𝑁𝑧𝑧𝑁𝑁 (4) 

where 𝑎𝑎𝑛𝑛 ≥ 0, for 𝐸𝐸 =  0,··· ,𝑁𝑁 −  1 and 𝑎𝑎𝑁𝑁 > 0. 
From the fundamental theorem of algebra 𝑃𝑃𝑁𝑁 has 
exactly 𝑁𝑁 roots (which can be degenerated) and 
can be completely specified by knowing its roots 
𝑟𝑟𝑛𝑛,𝐸𝐸 =  1, . . . ,𝑁𝑁, and the leading coefficient 𝑎𝑎𝑁𝑁. In 
fact, we can write 

𝑃𝑃𝑁𝑁(𝑧𝑧) =  𝑎𝑎𝑁𝑁�(𝑧𝑧 − 𝑟𝑟𝑛𝑛).
𝑁𝑁

𝑛𝑛=1

 (5) 

Since we are considering all coefficients 𝑎𝑎𝑛𝑛 ≥
 0, we see that 𝑃𝑃𝑁𝑁  has no roots in the positive real 
line (in fact, for 𝑧𝑧 >  0, we have 𝑃𝑃𝑁𝑁(𝑧𝑧)  >  0). 
Furthermore, since all coefficients are real, then if 
𝑟𝑟 is a root of 𝑃𝑃𝑁𝑁, then �̅�𝑟  (the complex conjugate or 
𝑟𝑟) is also a root. This means the zeros must be 
symmetrically distributed around the real axis and 
never touch the positive real axis (no zero of 𝑃𝑃𝑁𝑁(𝑧𝑧) 
can be real and positive). Figure 6 gives an 
example of such distribution for 𝑁𝑁 < +∞.  

 

 
Figure 6. Example of a distribution of zeros for 𝑁𝑁 

finite. 
 

 
Figure 7. Example of a distribution of zeros in 

the thermodynamic limit. 
 

As the system grows, more microstates 
become acceptable (𝑁𝑁 →  +∞). The number of 
zeros will grow and can accumulate in areas, 
curves and points of the complex plane. 
Especially in the thermodynamic limit a pair of 
zeros can become closer to the positive real axis. 

Figure 7 show an example of such limit 
distribution. 

We now define for all complex 𝑧𝑧, except for the 
zeros 𝑧𝑧 =  𝑟𝑟𝑛𝑛 =  𝑥𝑥𝑛𝑛 +  𝑖𝑖𝑦𝑦𝑛𝑛, the (complex density 
of) free energy 

𝑓𝑓𝑁𝑁(𝑧𝑧) =
1
𝑁𝑁𝛽𝛽 

ln𝑃𝑃𝑁𝑁(𝑧𝑧) (6) 

This free energy can be rewritten using the 
factorization of eq. 5 to obtain 

𝑓𝑓𝑁𝑁(𝑧𝑧) =
ln𝑎𝑎𝑛𝑛
𝑁𝑁𝛽𝛽 

+ �
ln(𝑧𝑧 − 𝑟𝑟𝑛𝑛)

𝑁𝑁𝛽𝛽 

𝑁𝑁

𝑛𝑛=1

. (7) 

The last equation can be written in terms of the 
density of the zeros of the partition function, giving 
us 

𝑓𝑓𝑁𝑁(𝑧𝑧) =
ln𝑎𝑎𝑛𝑛
𝑁𝑁𝛽𝛽 

+ � 𝜌𝜌𝑁𝑁(𝑥𝑥, 𝑦𝑦) ln(𝑧𝑧 − 𝑥𝑥 − 𝑖𝑖𝑦𝑦) 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
ℝ2 

. 

where 𝜌𝜌𝑁𝑁(𝑥𝑥, 𝑦𝑦) is the density of zeros of the 
partition function 𝑍𝑍𝑁𝑁. While 𝑁𝑁 is finite, this density 
is simply given by  

𝜌𝜌𝑁𝑁(𝑥𝑥, 𝑦𝑦) =
1
𝑁𝑁
�𝛿𝛿(𝑥𝑥 − 𝑥𝑥𝑛𝑛)𝛿𝛿(𝑦𝑦 − 𝑦𝑦𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

 (8) 

where 𝑥𝑥𝑛𝑛 +  𝑖𝑖𝑦𝑦𝑛𝑛 is a zero of the partition function 
and 𝛿𝛿(𝑥𝑥) is the Dirac Delta function, which can be 
roughly defined by the relations 

𝛿𝛿(𝑥𝑥) = 0 ∀𝑥𝑥 ≠ 0 and   � 𝑓𝑓(𝑥𝑥)𝛿𝛿(𝑥𝑥)𝑑𝑑𝑥𝑥
+∞

−∞
= 𝑓𝑓(0),∀ 𝑓𝑓 continous. 

Now we note that a Taylor series expansion of 
𝑓𝑓𝑁𝑁(𝑧𝑧) around any point 𝑧𝑧 which is not a zero of 
𝑃𝑃𝑁𝑁(𝑧𝑧) has a finite radius of convergence (given by 
the distance to the nearest zero from 𝑧𝑧). This 
implies that 𝑓𝑓𝑁𝑁(𝑧𝑧) is analytic in any region of the 
complex plane that has no partition function zeros. 
Since a phase transition correspond to a 
discontinuity in a derivative of the free energy, we 
see that such a transition can only occur at a point 
𝑧𝑧𝑐𝑐 in the complex plane if there is at least one zero 
of the partition function 𝑍𝑍𝑁𝑁 within any arbitrarily 
small region around the point 𝑧𝑧𝑐𝑐. If 𝑁𝑁, the number 
of partition function zeros 𝑟𝑟𝑛𝑛 is finite, only at the 
isolated points 𝑟𝑟𝑛𝑛, we can identify a phase 
transition (at this points 𝑓𝑓 exhibits a logarithmic 
singularity). Since such a point cannot lie on the 
positive real axis, there is no scope for a physical 
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phase transition in a finite system. However, if the 
partition function zeros accumulate towards a 
point 𝑥𝑥𝑐𝑐 on the real axis as we increase the 
number of zeros 𝑁𝑁 to infinity there is the possibility 
of a phase transition. 

In order to deal with the thermodynamic limit 
(see ref. [11] for rigorous considerations) we shall 
assume that the limit 

lim
𝑁𝑁→∞

𝑓𝑓𝑁𝑁(𝑧𝑧) = 𝑓𝑓(𝑧𝑧) 

exists and we may write 

𝑓𝑓(𝑧𝑧) =  
1
𝛽𝛽
� 𝜌𝜌(𝑥𝑥,𝑦𝑦) ln(𝑧𝑧 − 𝑖𝑖𝑥𝑥 − 𝑖𝑖𝑦𝑦) 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
ℝ2

+ 𝑐𝑐𝑐𝑐𝐸𝐸𝑠𝑠𝑐𝑐. 

the constant term above is physically irrelevant (it 
can be eliminated by changing the ground state 
energy 𝜖𝜖0 to an adequate value) and we will 
neglect it in the following. Here 𝜌𝜌(𝑥𝑥,𝑦𝑦) is the local 
density of zeros in the thermodynamic limit, i.e. 

lim
𝑁𝑁→∞

𝜌𝜌𝑁𝑁(𝑧𝑧) = 𝜌𝜌(𝑧𝑧) 

From eq. 8, we see that 

� 𝜌𝜌(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
ℝ2

= 1 (9) 

Now, we remark that 𝑓𝑓(𝑧𝑧) is a complex-valued 
function which is analytic outside the regions 
containing zeros (i.e. 𝑓𝑓 is analytic when 𝜌𝜌(𝑥𝑥, 𝑦𝑦)  =
 0). To get a further understanding on 𝑓𝑓, we 
decompose it in its real and imaginary parts, i.e. 
we write 

𝛽𝛽𝑓𝑓(𝑧𝑧) =  𝜙𝜙(𝑧𝑧) + 𝑖𝑖 𝜓𝜓(𝑧𝑧) = Re 𝑓𝑓(𝑧𝑧) + 𝑖𝑖 Im 𝑓𝑓(𝑧𝑧) 

where 

𝜙𝜙(𝑧𝑧) = � 𝜌𝜌(𝑥𝑥, 𝑦𝑦) ln |𝑧𝑧 − 𝑥𝑥 − 𝑖𝑖𝑦𝑦|𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦
ℝ2

 (10) 

and 

𝜓𝜓(𝑧𝑧) = � 𝜌𝜌(𝑥𝑥,𝑦𝑦) arg(𝑧𝑧 − 𝑥𝑥
ℝ2

− 𝑖𝑖𝑦𝑦) 𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦  (mod 2𝜋𝜋) 

(11) 

So, from basic complex analysis (see ref. [12] 
for a fast introduction to complex functions), 
Cauchy-Riemann equations must hold 
everywhere 𝑓𝑓(𝑧𝑧) is analytic. So, if 𝑧𝑧 ∈ ℂ is not a 
zero, then  

𝜕𝜕𝜙𝜙
𝜕𝜕𝑥𝑥

(𝑧𝑧) =
𝜕𝜕𝜓𝜓
𝜕𝜕𝑦𝑦

(𝑧𝑧) and 
𝜕𝜕𝜙𝜙
𝜕𝜕𝑦𝑦

(𝑧𝑧) = −
𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥

(𝑧𝑧).  

So everywhere f is analytic, we must have that 

 ∇��⃗ 𝜙𝜙 ⋅ ∇��⃗ 𝜓𝜓 = 0 i.e. ∇��⃗ 𝜙𝜙 ⊥ ∇��⃗ 𝜓𝜓  (12) 

Also, if 𝑧𝑧 is not a zero of the partition function, i.e. 
𝜌𝜌(𝑧𝑧)  =  0, then Cauchy-Riemann equations also 
implies that 

∇2𝜙𝜙(𝑧𝑧) = 0 and ∇2𝜓𝜓(𝑧𝑧) = 0, if 𝜌𝜌(𝑧𝑧) = 0 

Now, we desire to obtain an expression for the 
density 𝜌𝜌(𝑧𝑧) in terms of the free energy 𝑓𝑓(𝑧𝑧). First, 
we note that 

∇2 ln|𝑥𝑥 + 𝑖𝑖𝑦𝑦| = 2𝜋𝜋𝛿𝛿(𝑥𝑥)𝛿𝛿(𝑦𝑦). 

That is ln |𝑥𝑥 + 𝑖𝑖𝑦𝑦| is the kernel (or Green function) 
of the two-dimensional Laplacian. So, we find that 

 

∇2𝜙𝜙(𝑧𝑧) =  ∇2 � 𝜌𝜌(𝑥𝑥′,𝑦𝑦′) ln|𝑧𝑧 − 𝑥𝑥′ − 𝑖𝑖𝑦𝑦′|𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦 ′
ℝ2

= � 𝜌𝜌(𝑥𝑥′,𝑦𝑦′)∇2 ln|𝑧𝑧 − 𝑥𝑥′ − 𝑖𝑖𝑦𝑦′|𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦 ′
ℝ2

 

                                = 2𝜋𝜋 ∫ 𝜌𝜌(𝑥𝑥′,𝑦𝑦′)𝛿𝛿(𝑥𝑥 − 𝑥𝑥′)𝛿𝛿(𝑦𝑦 − 𝑦𝑦′)𝑑𝑑𝑥𝑥′𝑑𝑑𝑦𝑦′ℝ2   
 

where we used 𝑧𝑧 =  𝑥𝑥 +  𝑖𝑖𝑦𝑦. So, we see that 

∇2𝜙𝜙(𝑧𝑧) = 2𝜋𝜋𝜌𝜌(𝑧𝑧). (13) 

This equation is familiar from electrostatics 
(although in two-dimensions). In this sense, 𝜙𝜙(𝑧𝑧) 
is analogous to an electrostatic potential, −∇��⃗ 𝜙𝜙(𝑧𝑧) 
is analogous to a static electric field and 𝜌𝜌(𝑧𝑧) is 
analogous to a density of electric charges. 

4. The Nature of the Critical Point 
Up to now, we consider the problem of the 

location of the phase transition point, i.e. how, 
when knowing the partition function (in the 
thermodynamic limit), can one locate a phase 
transition point by investigating the zeros of this 
partition function with respect to a control 
parameter of the system. In this section we wish 
to consider a slightly related problem, namely, the 
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characteristics of the transition, i.e. how can one 
extract information on the nature of the phase 
transition (e.g. if it is a discontinuous or 
continuous one) from the properties and 
distribution of these zeros.  

Here, we put forward the electrostatics 
analogy and note that as long as we can integrate 
𝜌𝜌(𝑧𝑧) over bounded regions containing any 
singularities of 𝑓𝑓, the free energy will be a 
continuous function (see ref. [13]). We shall 
employ this idea to derive a rule for locating phase 
boundaries given a partition function. Suppose 
that around points 𝑧𝑧1 and 𝑧𝑧2 in the complex plane, 
one has distinct analytic expressions for 𝜙𝜙1(𝑧𝑧) 
and 𝜙𝜙2(𝑧𝑧), this means 𝜙𝜙1 ≠ 𝜙𝜙2 (i.e. they not the 
same function over the entirety complex plane). In 
order to guarantee that the potential is continuous 
at all points on the complex plane, we must have 
a phase boundary 𝒞𝒞 at those values of z for which 
the condition 

𝜙𝜙1(𝑧𝑧) = 𝜙𝜙2(𝑧𝑧). (14) 

holds. This is the scenario of a phase transition as 
we describe in the introduction of this chapter. The 
change of behavior from 𝜙𝜙1 to 𝜙𝜙2 is delimited by 
the zeros of the partition function. Now, assume 
that the boundary between the region where 𝜙𝜙1(𝑧𝑧) 
and 𝜙𝜙2(𝑧𝑧) holds are given by a curve. So by 
continuity, the analytic expressions for 𝜙𝜙1(𝑧𝑧) and 
𝜙𝜙2(𝑧𝑧) must hold on the phase boundary 𝒞𝒞, so 
since 𝜙𝜙1(𝑧𝑧) and 𝜙𝜙2(𝑧𝑧) are different functions, 
some derivatives of 𝜙𝜙(𝑧𝑧) will be different at these 
values of 𝑧𝑧 (i.e. at the zeros of the partition 
function) and we expect the density of zeros at 
these points to be non-zero. 

 

 
Figure 8. A phase boundary. 

 

 
Figure 9. Application of the divergence theorem. 

 

In the case of a “physical phase transition”, a 
solution of eq. 14 describes a curve C that 
intersects the positive real 𝑧𝑧 axis at a point 𝑧𝑧0 (see 
Figure 8). At this point, we now understand that in 
the case of a phase transition the zeros must 
pinch the positive real axis 𝑧𝑧0in the 
thermodynamic limit. At this situation, we say that 
a physical phase transition to take place, we are 
interested in the density of zeros per unit length of 
this curve 𝒞𝒞. Now, let 𝑠𝑠 be the arc length 
measured along 𝒞𝒞 from the transition point 𝑧𝑧0. Let 
𝜆𝜆(𝑠𝑠) to be the line density of zeros along the curve 
𝒞𝒞 . Consider a short section of the curve 𝒞𝒞  with 
length ∆𝑠𝑠 enclosed by a closed curve 𝛾𝛾, that 
delimits an area 𝑑𝑑𝑑𝑑, and has two sides parallel to 
𝐶𝐶 and the other two sides perpendicular to 𝒞𝒞  (see 
Figure 9). Integrating the density 𝜌𝜌(𝑧𝑧) over this 
area we have that  

� 𝜌𝜌(𝑥𝑥,𝑦𝑦)𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜆𝜆(𝑠𝑠)Δ𝑠𝑠. 

On the other hand, the divergence theorem 
applies here (see Figure 9) so 

� ∇��⃗
𝛾𝛾

𝜙𝜙(𝑧𝑧)𝑑𝑑𝑧𝑧 = � ∇2𝜙𝜙(𝑧𝑧) 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

. 

So we see that 

2𝜋𝜋�𝜆𝜆(𝑠𝑠)𝑑𝑑𝑠𝑠 = Δ𝑠𝑠 �∇��⃗ 𝜙𝜙2(𝑧𝑧) − ∇��⃗ 𝜙𝜙1(𝑧𝑧) �

⋅ 𝐸𝐸�(𝑧𝑧) 
(15) 

where 𝐸𝐸�(𝑧𝑧) is a unitary vector normal to the curve 
𝒞𝒞 at the point 𝑧𝑧 (see Figure 8). At that point, eq.12 
reads 

 ∇��⃗ 𝜙𝜙(𝑧𝑧) ⋅ 𝐸𝐸�(𝑧𝑧) = ∇��⃗ 𝜓𝜓(𝑧𝑧) ⋅ �̂�𝑐(𝑧𝑧) (16) 
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where �̂�𝑐(𝑧𝑧) is the unit vector tangent to the curve 
𝒞𝒞  at the point 𝑧𝑧 (see Figure 8). So, we can 
recognize the scalar product in eq. 16 as the 
directional derivative of 𝜓𝜓 along the curve 𝒞𝒞. 
Putting this together with our expression for the 
line density of charges, we find that 

𝜆𝜆(𝑠𝑠) =  
1

2𝜋𝜋
𝑑𝑑
𝑑𝑑𝑠𝑠
�𝜓𝜓2(𝑧𝑧) − 𝜓𝜓1(𝑧𝑧)�. (15) 

Let us now assume that in the thermodynamic 
limit, there is a phase transition at the point 𝑧𝑧0 >
 0. Then, either side of the transition the free 
energy 𝑓𝑓 is analytic so it can be written as a Taylor 
series. For Re(𝑧𝑧 −  𝑧𝑧0)  <  0, we have the series 

𝛽𝛽𝑓𝑓1(𝑧𝑧) = 𝛽𝛽𝑓𝑓1(𝑧𝑧0) + 𝑎𝑎1(𝑧𝑧 − 𝑧𝑧0) + 𝑏𝑏1(𝑧𝑧 − 𝑧𝑧0)2

+ 𝑐𝑐1(𝑧𝑧 − 𝑧𝑧0)3 + ⋯ 

while for Re(𝑧𝑧 −  𝑧𝑧0)  >  0, we have the Taylor 
series 

𝛽𝛽𝑓𝑓2(𝑧𝑧) = 𝛽𝛽𝑓𝑓2(𝑧𝑧0) + 𝑎𝑎2(𝑧𝑧 − 𝑧𝑧0) + 𝑏𝑏2(𝑧𝑧 − 𝑧𝑧0)2

+ 𝑐𝑐2(𝑧𝑧 − 𝑧𝑧0)3 + ⋯ 

Now, we note that the free energy must be real 
along the real 𝑧𝑧 axis, so the coefficients 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘and 
𝑐𝑐𝑘𝑘 (𝑘𝑘 =  1,2) must also be real. Since 𝜙𝜙  , the real 
part of 𝑓𝑓(𝑧𝑧) is continuous across the phase 
boundary curve, then eq. 14 must hold for both 𝑧𝑧 
and 𝑧𝑧0. Therefore, writing 𝑧𝑧 =  𝑥𝑥 +  𝑖𝑖𝑦𝑦 and 𝑧𝑧0 =
 𝑥𝑥0, we find that (𝑘𝑘 = 1,2) 

𝜙𝜙𝑘𝑘(𝑧𝑧) = 𝜙𝜙(𝑥𝑥0) + 𝑎𝑎𝑘𝑘(𝑥𝑥 − 𝑥𝑥0) + 𝑏𝑏𝑘𝑘[(𝑥𝑥 − 𝑥𝑥0)2 − 𝑦𝑦2]
+ 𝑐𝑐𝑘𝑘  [ (𝑥𝑥 −  𝑥𝑥0)3 −  3𝑦𝑦2(𝑥𝑥 
−  𝑥𝑥0)] + ⋯ 

Similarly, we find that 

𝜓𝜓𝑘𝑘(𝑧𝑧) = 𝑎𝑎𝑘𝑘𝑦𝑦 + 𝑏𝑏𝑘𝑘[2𝑦𝑦(𝑥𝑥 − 𝑥𝑥0)]
+ 𝑐𝑐𝑘𝑘[3𝑦𝑦(𝑥𝑥 − 𝑥𝑥0)2 − 𝑦𝑦3] + ⋯ 

We now consider how the curve boundary 𝒞𝒞 
behaves near the critical point. In particular, we 
will show that the angle with which the zeros line 
cross the critical point can be used to classify the 
phase transition. 

 
4.1 First order Phase Transition 

In a first order phase transition, the first 
derivative of 𝛽𝛽𝑓𝑓 is discontinuous across the phase 
boundary curve. This means 𝑎𝑎1 ≠  𝑎𝑎2. Assume 
that 𝑏𝑏1 ≠  𝑏𝑏2. Therefore, up to the second order,  

𝑎𝑎1(𝑥𝑥 − 𝑥𝑥0) + 𝑏𝑏1[(𝑥𝑥 − 𝑥𝑥0)2 − 𝑦𝑦2]
= 𝑎𝑎2(𝑥𝑥 − 𝑥𝑥0)
+ 𝑏𝑏2[(𝑥𝑥 − 𝑥𝑥0)2 − 𝑦𝑦2]. 

Therefore,  

𝑦𝑦2 = (𝑥𝑥 − 𝑥𝑥0)2 +
𝑎𝑎2 − 𝑎𝑎1
𝑏𝑏2 − 𝑏𝑏1

(𝑥𝑥 − 𝑥𝑥0)

+ 𝒪𝒪((𝑥𝑥 −  𝑥𝑥0)3 −  3𝑦𝑦2(𝑥𝑥 −  𝑥𝑥0)) 

and we see that near the transition point 𝑥𝑥0, the 
curve of zeros is a hyperbola that passes 
smoothly through the transition point. Hence the 
tangent to the curve of zeros is parallel to the 
imaginary axis at 𝑥𝑥0 as shown in Figure 10.  

The density of zeros at the transition point 𝑧𝑧0 is 
nonzero at a first-order phase transition (i.e. one 
at which the first derivative of the free energy is 
discontinuous). In fact, eq. 15 implies that 

𝜆𝜆(0) =
𝑎𝑎2 − 𝑎𝑎1

2𝜋𝜋
 . 

Recalling that the coefficients 𝑎𝑎𝑘𝑘 = 𝜕𝜕𝜕𝜕𝑘𝑘
𝜕𝜕𝑧𝑧

(𝑧𝑧0) and 
using that 𝑧𝑧 =  𝑒𝑒−𝛽𝛽𝑛𝑛 , a simple application of the 
chain rule gives the (density of) entropy 𝑠𝑠 at each 
side of the transition 

𝑠𝑠𝑘𝑘(𝑧𝑧0) =
𝜕𝜕𝑓𝑓𝑘𝑘
𝜕𝜕𝑘𝑘

(𝑧𝑧0) =
𝑎𝑎𝑘𝑘
𝛽𝛽 
𝜕𝜕𝑧𝑧
𝜕𝜕𝑘𝑘

(𝑧𝑧0) = 𝑎𝑎𝑘𝑘
𝜖𝜖
𝑘𝑘𝑐𝑐
𝑧𝑧0, 

where 𝑘𝑘𝑐𝑐 =  −  𝑛𝑛
𝑘𝑘 ln 𝑧𝑧0

 denotes the critical 

temperature. Therefore ∆𝐿𝐿, the latent heat of the 
system is given by 

∆𝐿𝐿 =  𝑘𝑘𝑐𝑐(𝑠𝑠2(𝑘𝑘𝑐𝑐)  −  𝑠𝑠1(𝑘𝑘𝑐𝑐))  =  2𝜋𝜋𝜆𝜆(0)𝑧𝑧0𝜖𝜖. 

 

 
Figure 10. How the zeros approach a critical 

point in a first order phase transition. 
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Figure 11. How the zeros approach a critical 

point in a second order phase transition. 
 
 

 
Figure 12. How the zeros approach a critical 

point in a 𝑁𝑁-th order phase transition. 
 

4.2 Second-order phase transition 

In a second order phase transition, the second 
derivative of 𝑓𝑓 is discontinuous across the the 
phase boundary curve. Then 𝑎𝑎1 =  𝑎𝑎2 but 𝑏𝑏1 ≠  𝑏𝑏2, 
we have that the curve 𝒞𝒞 obeys the equation 

𝑦𝑦 = ±(𝑥𝑥 − 𝑥𝑥0). 

So, in the vicinity of 𝑧𝑧0 it consists of two straight 
lines that make an angle of ± 𝜋𝜋

4
 with the real axis 

(and 𝜋𝜋
2
 between them) and meet at 𝑧𝑧0 as shown in 

Figure 11. 

Over the curve 𝑦𝑦 =  (𝑥𝑥 −  𝑥𝑥0) the imaginary 
part of 𝑓𝑓 is given by 

𝜓𝜓𝑘𝑘(𝑥𝑥 +  𝑖𝑖(𝑥𝑥 −  𝑥𝑥0)𝑦𝑦) =  𝑎𝑎𝑦𝑦 +  2𝑏𝑏𝑘𝑘𝑦𝑦2 +  𝒪𝒪(𝑦𝑦3). 

The length of the curve s between 𝑧𝑧0 =  𝑥𝑥0 and 
𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖(𝑥𝑥 − 𝑥𝑥0) satisfies 𝑠𝑠2 =  2𝑦𝑦2, then eq. 17 
implies that 

𝜆𝜆(𝑠𝑠) =  
1

2𝜋𝜋
𝑑𝑑
𝑑𝑑𝑠𝑠

(𝑏𝑏2 − 𝑏𝑏1)𝑠𝑠2 = 𝑠𝑠 �
𝑏𝑏2 − 𝑏𝑏1
𝜋𝜋

� 

This shows that in a second-order phase 
transition, the density of partition function zeros 
decreases linearly to zero at the phase transition 
point.  

Second-order phase transitions include the 
ferromagnetic phase transition observed in 

materials such as iron, where the magnetization 
(which is the first derivative of the free energy with 
respect to the applied magnetic field) increases 
continuously from zero as the temperature is 
lowered below a critical temperature called the 
Curie temperature (the temperature at which the 
material lose its permanent magnetic properties, 
to be replaced by the magnetic properties induced 
by the external magnetic field). The magnetic 
susceptibility, the second derivative of the free 
energy with the field, changes discontinuously. 

 

4.3 Higher-order phase transitions 

If the discontinuities appear at higher orders 
derivatives of the complex-valued free energy, 
then one can repeat the above type of reasoning 
to find the equation of 𝒞𝒞 and the density of zeros 
in the vicinity of the transition point 𝑧𝑧0. 

As an example, we consider a third order 
phase transition, i.e. the third derivative of 𝑓𝑓 is 
discontinuous across the the phase boundary 
curve. This means 𝑎𝑎1  =  𝑎𝑎2 and 𝑏𝑏1  =  𝑏𝑏2, but 𝑐𝑐1 ≠
 𝑐𝑐2. This implies that, up to the fourth order, the 
curve 𝒞𝒞 obeys the equation 

𝑦𝑦 =  ±
√3
3

(𝑥𝑥 − 𝑥𝑥0) 

So, in the vicinity of 𝑧𝑧0 it consists of two straight 

lines that make an angle of ± 𝜋𝜋
6
 (since tan 𝜋𝜋

6
=  √3

3
) 

with the real axis. The length of the curve s 
between 𝑧𝑧0 =  𝑥𝑥0 and 𝑧𝑧 satisfies 𝑠𝑠 =  2𝑦𝑦, then eq. 
17 implies that 

𝜆𝜆(𝑠𝑠) =  �
𝑐𝑐2 − 𝑐𝑐1

2𝜋𝜋
�
𝑑𝑑
𝑑𝑑𝑠𝑠

(3𝑦𝑦(𝑠𝑠)(𝑥𝑥(𝑠𝑠) − 𝑥𝑥0)2 − 𝑦𝑦3(𝑠𝑠))

= 4 �
𝑐𝑐2 − 𝑐𝑐1
𝜋𝜋

�
𝑑𝑑𝑦𝑦3

𝑑𝑑𝑠𝑠
= 3 �

𝑐𝑐2 − 𝑐𝑐1
2𝜋𝜋

� 𝑠𝑠2 

More generally, write 𝑧𝑧 −  𝑧𝑧0 =  𝑠𝑠 𝑒𝑒𝜋𝜋𝛼𝛼 and let 
𝑓𝑓𝑘𝑘(𝑧𝑧) = 𝑎𝑎0

(𝑘𝑘) + 𝑎𝑎1
(𝑘𝑘)𝑧𝑧 + 𝑎𝑎2

(𝑘𝑘)𝑧𝑧2 + ⋯. So, we have 
that 

𝑓𝑓𝑘𝑘(𝑧𝑧) = �𝑎𝑎𝑛𝑛
(𝑘𝑘)𝑠𝑠𝑛𝑛𝑒𝑒𝜋𝜋𝑛𝑛𝛼𝛼

𝑛𝑛

. 

If we examine a 𝐸𝐸-th order phase transition the 
first different coefficient will be the 𝐸𝐸-th coefficient, 
i.e. 𝑎𝑎𝑘𝑘

(1) = 𝑎𝑎𝑘𝑘
(2) for 0 ≤  𝑘𝑘 ≤  𝐸𝐸 −  1, and 𝑎𝑎𝑛𝑛

(1) ≠
𝑎𝑎𝑛𝑛

(2). So, we must have 𝑎𝑎𝑛𝑛
(1) cos𝐸𝐸 𝛼𝛼 = 𝑎𝑎𝑛𝑛

(2) cos𝐸𝐸 𝛼𝛼. 
Therefore, the curve 𝒞𝒞 does not cross smoothly 
the real axis but approaches it at an angle ± 𝜋𝜋

2𝑛𝑛
. 
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from above and below as shown in Figure 12. So, 
for a sufficiently small arc length, the application 
of eq. 17 yields 

𝜆𝜆(𝑠𝑠) = �
𝑎𝑎𝑛𝑛

(2) − 𝑎𝑎𝑛𝑛
(1)

2𝜋𝜋
�𝐸𝐸𝑠𝑠𝑛𝑛−1. 

This result suggests that for a 𝐸𝐸-th order transition 
𝑓𝑓2(𝑧𝑧)  −  𝑓𝑓1(𝑧𝑧)  ∼  𝑧𝑧𝑛𝑛. 

 

 
Figure 13. Zoom on the real positive semi-axis 
of the Fisher zeros map on the 𝑥𝑥 = 𝑒𝑒−𝛽𝛽𝑛𝑛  plane 
for the 2D classical XY-model in a 𝐿𝐿 ×  𝐿𝐿 square 
lattice. Adapted from [14]. The solid green line 

plots the expected limit 𝐿𝐿 →  +∞ limit. 
 

A particular interesting case of phase transition 
is the BKT transition. It is a transition from bound 
vortex-antivortex pairs at low temperatures to 
unpaired vortices and anti-vortices at 𝑘𝑘𝑐𝑐. The 
nature of this transition is completely different 
from the usual first order (discontinuous or with 
latent heat) or second order (without latent heat) 
phase transitions. Long range order does not exist 
and the two-point correlation function has an 
algebraic decay at low temperatures (𝑘𝑘 <  𝑘𝑘𝑐𝑐) and 
an exponential decay for high temperatures (𝑘𝑘 >
 𝑘𝑘𝑐𝑐). The most famous example is the BKT 
transition in the two-dimensional XY model (see 
[4]). B.V. Costa et al studied the zeros of the 
partition function for this model in ref. [14], their 
results are shown in Figure 13. We see that in the 
thermodynamic limit the line of zeros attack the 
real positive semi-axis at a zero angle. The attack 
angle allows us to state that this is an infinite-order 
phase transition. There are many other examples 
of infinite-order phase transitions. They are 
continuous but break no symmetries. Many 
quantum phase transitions, e.g., in two-
dimensional electron gases, belong to this class. 

 

5. Numerical Computations 
In the two last sections, we present a 

systematic approach to the problem of phase 
transition. Unfortunately, only a few special cases 
are accessible to a complete analytical description 
(such as the Molecular Zipper or the Ising model 
in one- and two-dimensions (see refs. [17] and 
[18])). Note that the thermodynamic limit of ρ the 
density of zeros is quite hard to obtain and even 
for a moderate size systems the quantity 𝑍𝑍𝑁𝑁 is not 
simple to be calculated. The best we can do is to 
numerically estimate 𝜌𝜌𝑁𝑁 for 𝑁𝑁 large enough, and 
use finite size scaling analysis to estimate the 
behavior of the thermodynamic limit (see ref. [19]). 
The computational approach to the study of phase 
transitions consists of two steps: the gathering of 
data in the form of a Monte Carlo simulation, 
followed by a numerical analysis of appropriate 
quantities. In our case, the Monte Carlo simulation 
is used to approximate the coefficients 𝑔𝑔(𝐸𝐸) of the 
polynomial 

𝑍𝑍𝑁𝑁 = �𝑔𝑔(𝐸𝐸)𝑒𝑒−𝛽𝛽𝐸𝐸
𝐸𝐸

 

For a fixed (inverse) temperature 𝛽𝛽 and size 𝑁𝑁 of 
the system, the process has the following steps: 
(a) Begin with an initial microstate 𝑠𝑠0. (b) Compute 
the energy 𝐸𝐸0 of this microstate. (c) Randomly, 
choose a new microstate 𝑠𝑠1. (d) Calculate 𝐸𝐸1. (e) 
if 𝐸𝐸1  ≤  𝐸𝐸0 accept 𝑠𝑠1 and return to step (c). (e’) if 
𝐸𝐸1  >  𝐸𝐸0, accept 𝑠𝑠_1with probability 𝑝𝑝 =  𝑒𝑒−𝛽𝛽𝛽𝛽𝐸𝐸, 
where 𝛿𝛿𝐸𝐸 =  𝐸𝐸1 − 𝐸𝐸0, and return to step (c). We 
register the number of accepted microstates for 
each energy level and produce a histogram. If the 
size of the system 𝑁𝑁 is large enough, this process 
will lead to a flat histogram. When the histogram 
is considered flat enough, we stop the process as 
shown in Figure 14. 

 
Figure 14. A “flat histogram” generated by a 

Monte Carlo Simulation. 
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The coefficients of the polynomial 𝑍𝑍𝑁𝑁 are 
approximated by the corresponding numbers of 
the histogram up to a multiplicative constant 
(which is irrelevant for the analysis of the zeros). 

 

 

 
Figure 15. A histogram for EPD method and the 

cutoff. 
 

In principle, we can numerically compute the 
zeros of 𝑍𝑍𝑁𝑁 with an arbitrary (fixed) precision 𝛿𝛿𝑧𝑧. 
Let 𝑧𝑧1 be the closest root to the positive real half-
axis (called the dominant zero). If Im 𝑧𝑧1 >  𝛿𝛿𝑧𝑧, i.e. 
𝑧𝑧1 is not close enough to the real axis, we increase 
the size 𝑁𝑁 of the system and rerun our algorithm. 
Otherwise, Im 𝑧𝑧1 <  𝛿𝛿𝑧𝑧 and we estimate the critical 
point by putting 𝑧𝑧𝑐𝑐 =  Re 𝑧𝑧1. The other roots allow 
us to estimate the density of zeros 𝜌𝜌 and therefore 
all the thermodynamics of the system. The results 
shown in Figure 13 are obtained using this 
method. 

 
5.1. Energy Probability Distribution Zeros 

The use of Monte Carlo techniques requires 
the construction of the density of states in large 
intervals of energy (or, if allied with finite size 
scaling, the estimation of quantities like the 
specific heat or susceptibilities in a wide range of 
temperatures). Although many of these 
techniques are well developed, they are also 
demands time when the system size becomes 
large. In this subsection, we discuss a method to 
study the critical behavior of a system based on 
the partial knowledge of the complex Fisher zeros 
set of the partition function. This method is 
originally presented in ref. [15]. 

To introduce the method, fix a 𝛽𝛽𝑗𝑗 and let �̂�𝑧 =
𝑒𝑒−𝛽𝛽𝑗𝑗𝑛𝑛𝑧𝑧. Therefore, we write the partition function 
as a polynomial in �̂�𝑧, 

𝑍𝑍𝑁𝑁 = �𝑔𝑔(𝐸𝐸𝜖𝜖)𝑧𝑧𝑛𝑛 =�𝑔𝑔(𝐸𝐸𝜖𝜖)𝑧𝑧𝑛𝑛  =�𝑔𝑔(𝐸𝐸𝜖𝜖)𝑒𝑒+𝑛𝑛𝛽𝛽𝑗𝑗𝑛𝑛�̂�𝑧𝑛𝑛 = �ℎ𝛽𝛽𝑗𝑗(𝐸𝐸𝜖𝜖)�̂�𝑧𝑛𝑛. 

The coefficient ℎ𝛽𝛽𝑗𝑗(𝐸𝐸𝜖𝜖) of the new polynomial is 
nothing but the unnormalized canonical energy 
probability distribution (EPD). Clearly, there is an 
one-to-one correspondence between the Fisher 
zeros z and the EPD zeros �̂�𝑧, since they are 
related through a trivial conformal transformation. 

Note that for 𝛽𝛽𝑗𝑗 close to the critical (inverse) 
temperature𝛽𝛽𝑐𝑐, the critical EPD zero  �̂�𝑧𝑐𝑐 ≈ 1. So 
with this transformation, we can “filter” the region 
where the dominant zero is located and still have 
the relevant information about the phase 
transition. For finite systems, a small imaginary 
part of 𝑧𝑧𝑐𝑐 is expected. Indeed, we may expect that 
the dominant zero is the one with the smallest 
imaginary part on the real positive region 
regardless the choice of 𝛽𝛽𝑗𝑗. Once we locate the 
dominant zero, its distance to 1 allows us to 
compute ∆𝛽𝛽 and an estimate for the critical 𝛽𝛽𝑐𝑐. 

An algorithm following those ideas is: (a) For a 
fixed 𝛽𝛽𝑗𝑗 construct a histogram for the coefficients 
ℎ𝛽𝛽𝑗𝑗(𝐸𝐸𝜖𝜖). (b) Find the zeros of ∑ℎ𝛽𝛽𝑗𝑗(𝐸𝐸𝜖𝜖) �̂�𝑧𝑛𝑛 near 
�̂�𝑧 = 1. Let �̂�𝑧1be the dominant zero. (c) If |�̂�𝑧1 − 1| is 
small enough (i.e. is less than the precision with 
which the roots of the polynomial are computed) 
then stop. (c’) Otherwise compute 𝛽𝛽𝑗𝑗+1 =  𝛽𝛽𝑗𝑗 −
lnRe  𝑧𝑧1  

𝑛𝑛
 and return to step (a). 

For estimating the critical temperature, this 
procedure has a clearly advantage since we can 
search for roots only near �̂�𝑧 = 1 . Furthermore, 
usually, the histogram for ℎ𝛽𝛽𝑗𝑗(𝐸𝐸𝜖𝜖) is highly 
concentrated near the average energy (see 
Figure 15). Note that very small coefficients 
ℎ𝛽𝛽𝑗𝑗(𝐸𝐸𝜖𝜖)  are related with states with a very small 
probability to occur and are not pertinent to the 
phase transition. Thus, for 𝛽𝛽𝑗𝑗  ≈  𝛽𝛽𝑐𝑐 , we can 
judiciously discard small values of ℎ𝛽𝛽𝑗𝑗(𝐸𝐸𝜖𝜖). Say 
we discard every ℎ𝛽𝛽𝑗𝑗(𝐸𝐸𝜖𝜖) smaller than some cutoff 
criteria. Those small values of ℎ𝛽𝛽𝑗𝑗(𝐸𝐸𝜖𝜖) generally 
related to very high energy states, as a 
consequence, we do not have to deal with high 
degree polynomials with coefficients spanning 
over many orders of magnitude. The advantage is 
that the “relevant” polynomial used to approximate 
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the partition function has fewer roots with its 
coefficients ranging in a narrow region. The 
method is iterative, so that, the transition 
temperature can be (in principle) approached at 
will. 

 

6. Forewords 
This In these notes, we have shown a general 

mathematical approach to the study of phase 
transitions. We described how partition function 
zeros are related to phase transitions: 

1. The accumulation of zeros of the 
partition function along the (physically 
accessible) real, positive semi-axis of the 
complex 𝑧𝑧 indicates the location of the 
phase transition point(s); 

2. The density of zeros near such an 
accumulation point determines the order 
and strength of the transition (according 
to Ehrenfest’s classification scheme) at 
that point. 

Also, we obtained a rule (eq. 14) for locating 
phase boundaries and a method (eq. 17) for 
finding the density of zeros along such 
boundaries. We show that first-order (continuous) 
transitions exhibit a nonzero density of partition 
functions zeros at the transition point. On the 
other hand the density of zeros decays as a 
power-law to zero at the transition point when the 
associated phase transition is continuous. Here, 
we chose to make a quite general analysis 
(although not quite rigorous). So far, our 
presentation does not follow the footprints of 
history. In fact, zeros in the complex fugacity (or 
chemical potential) plane offer a much more 
comfortable scenario and are the ones first 
studied in refs [7] and [8], today those zeros are 
commonly named Lee-Yang zeros. Zeros in the 
complex temperature plane (see ref. [9]), called 
Fisher zeros, and appeared some years after. Of 
course, in the equilibrium theory, these intensive 
“field-like” quantities play similar mathematical 
roles and one can just as easily generalize 
physical “field-like” variables (such as 
temperature) or fugacity-like variables (such as 
the quantity z considered above) to the complex 
plane without altering the properties of the 
partition function zero densities at first-order and 
high-orders phase transitions described above. 

Despite the apparently wide generality of the 
partition theory of equilibrium phase transitions, 
demonstrating its validity in the general statistical 
mechanics scenario is a difficult task (although 
there are works in this direction, such as [16]). A 
key problem is that the location of the zeros is very 
particular to each partition function. Usually 
determining the partition function for an arbitrarily 
large system is a challenging task. In some 
fortunate cases, one can rely on specific 
properties of a particular partition function (see 
ref. [10] for a myriad of examples). But, in general, 
the only hope is to compute the partition function 
(and its zeros) through numerical procedures. We 
briefly discussed some of those methods in 
section 5. 

We conclude by pointing out that the use of 
partition function zeros are a research field with 
increasing interest and activity. It worth to mention 
that beyond theoretical and computational 
approach, at least in the Lee-Yang formalism 
(complex fugacity zeros), the nature and 
existence of the zeros of the partition function was 
verified experimentally (see refs. [20] and [21]). 

 

Supporting Information 

Calculating Thermodynamic Quantities in the 
canonical ensemble 

 

Acknowledgments 
I thank the reviewers for their careful reading 

of the manuscript and their constructive remarks. 
We have taken their comments on board to 
improve and clarify the final manuscript. 

 

References and Notes 
[1]  Ehrenfest, P. Proc. Acad. Sci. Amsterdam, 1933, Vol. 

36, 153. 

[2] Kittel, C. Am. J. Phys. 1969, 37, 917. [Crossref] 

[3]  Landau, L. Nature 1936, 138, 840. [Crossref] 

[4]  Kosterlitz, J. M.; Thouless, D. J. J. Phys. C: Solid State 
Phys. 1973, 6, 1181. [Crossref] 

[5]  Reichl, Linda E. A modern course in statistical physics. 
John Wiley & Sons, 2016. 

[6]  Binney, J. J.; Dowrick, N. J.; Fisher, A. J.; Newman, 
M. E. J. The theory of critical phenomena: an 
introduction to the renormalization group. Oxford 
University Press Inc., 1992. 

http://www.orbital.ufms.br/index.php/Chemistry/article/downloadSuppFile/1362/365
http://www.orbital.ufms.br/index.php/Chemistry/article/downloadSuppFile/1362/365
https://doi.org/10.1119/1.1975930
https://doi.org/10.1038/138840a0
https://doi.org/10.1088/0022-3719/6/7/010


dos Anjos 
REVIEW 

 
 

Orbital: Electron. J. Chem. 11 (2): 97-110, 2019 110 

[7]  Yang, C.; Lee, T. Phys. Rev. 1952, 87, 404. [Crossref] 

[8]  Yang, C.; Lee, T. Phys. Rev. 1952, 87, 410. [Crossref] 

[9]  Fisher, M. E. The nature of critical points. University of 
Colorado Press, 1965. 

[10]  Ruelle, D. Statistical Mechanics: Rigorous Results. W. 
A. Benjamin, New York, 1969. 

[11]  Simon, B. The statistical mechanics of lattice gases. 
Vol. 1. Princeton University Press, 2014 

[12] Arfken, G. B.; Weber, H. J.  Mathematical methods for 
physicists. Academic Press, 1999. 

[13]  Helms, L. L. Introduction to potential theory. vol. 22. 
New York: wiley-Interscience, 1969. 

[14]  Rocha, J. C. S.; Mól, L. A. S.; Costa, B. V. Comput. 
Phys. Commun. 2016, 209, 88. [Crossref] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[15]  Costa, B. V.; Mól, L. A. S.; Rocha, J. C. S. Comput. 
Phys. Commun. 2017, 16, 77. [Crossef] 

[16]  Biskup, M. Borgs, C.; Chayes, J. T.;  Kleinwaks, L. J.; 
Kotecký, R. Phys. Rev. Lett. 2000, 84, 4794. 
[Crossref] 

[17]  Ising, E. Z. Phys. 1925, 31, 253. [Crossref] 

[18]  Onsager, L. Phys. Rev. 1944, 65, 117. [Crossref] 

[19]  Janke, W.; Kenna, R. Comput. Phys. Commun. 2002, 
147, 443. [Crossref] 

[20]  Wei, B.; Chen, S. W.; Po, H. C.; Liu, R. B. Sci. Rep. 
2014, 4, 5202. [Crossref] 

[21]  Peng, X.; Zhou, H.; Wei, B.; Cui, J.; Du, J.; Liu, R. B. 
Phys. Rev. Lett. 2015, 114, 010601. [Crossref] 

 

 

 

https://doi.org/10.1103/PhysRev.87.404
https://doi.org/10.1103/PhysRev.87.410
https://doi.org/10.1016/j.cpc.2016.08.016
https://doi.org/10.1016/j.cpc.2017.03.003
https://doi.org/10.1103/PhysRevLett.84.4794
https://doi.org/10.1007/BF02980577
https://doi.org/10.1103/PhysRev.65.117
https://doi.org/10.1016/S0010-4655(02)00323-5
https://doi.org/10.1038/srep05202
https://doi.org/10.1103/PhysRevLett.114.010601

