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Simultaneous Determination of Metals in Cachaça:  A 

Study on Comparison of Multivariate Methods and 

Quality Control   
 

Romário Junior Ferreiraa, Thalles R. Rosa  b, Alveriana Tagarro Tomaz  a, Josimar Ribeiro  a*, 
and Rosângela Cristina Barthusa 

 

This study aims to compare multivariate calibration methods developed from data obtained by square wave anodic 

stripping voltammetry using a hanging mercury drop electrode for simultaneous determination of metals in 

cachaça, the following metals were studied: copper, zinc and cadmium. Multivariate calibration, partial least 

squares (PLS) and artificial neural network (ANN) methods were used in previous studies using other electrodes 

for this determination. In this new study, besides ANN and PLS, a hybrid model that combines PLS and NN, namely 

PLS-Neural was used. Also, samples of industrial cachaças were incorporated into the study in addition to 

artisanal samples.  The quality of the methods was evaluated in terms of coefficient of determination (R2) and root 

mean square error of prediction (RMSEP).  F test was used for comparing methods at confidence level of 95%. 

Based on these studies, it was found that although all methods show good results, the method employing neural 

networks stands out in the determination of copper in samples of cachaça. All methods proved to be fast and 

relatively low-cost, and they can be used for such analyses. 

 

Graphical abstract 

                   

1. Introduction 

Cachaça is an alcoholic distillate obtained from the 
fermentation of sugar cane, with alcoholic contents ranging 
from 38% to 54% by volume, at a temperature of 20 oC [1]. The 

Brazilian production of this drink, divided between the forms 
handmade (artisanal) in stills and industrial, has been growing 
and promoting a large influence in several sectors such as 
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economic, social and health [2-4].    

Cachaça has considerable complexity, with numerous 
organic and inorganic constituents. In this study, the following 
inorganic constituents, metals, were studied: copper, zinc and 
cadmium.  Copper and zinc are essential elements required 
for numerous cellular functions. However, excessive intake of 
these metals is toxic and may cause serious health damages 
[2, 5-7]. Cadmium is a highly hazardous environmental 
pollutant, with significant toxicity in living beings [8]. The 
ingestion of this element can occur directly or through the 
process of bioaccumulation in a food chain. In view of the 
above, it is essential to develop methods for the analysis of 
metals that aim mainly to verify the quality of the beverages 
produced. 

Atomic absorption spectrometry is commonly used for 
metal determination in beverages, which is the recommended 
method for the specific determination of copper [2, 9]. In 
addition to that method, metals can be determined using X-
Ray fluorescence spectrometry and inductively coupled 
plasma optical emission spectrometry (ICP-OES) [8, 10-12]. 

Besides those above, the relatively low cost, non-
destructive and fast techniques corresponding to 
voltammetric techniques, specifically stripping techniques, 
usually employing mercury electrodes, have shown good 
results.  The mercury electrode is very versatile and has 
considerable advantages, such as a smooth, uniform and 
renewable surface, with excellent reproducibility. Although 
there are countless studies, including in our group [13], which 
aim to search for alternative electrodes with the same 
performance, it should be noted that in modern voltammetric 
instruments, the amount of waste generated is quite reduced, 
minimizing the negative aspects of the use of mercury. Also, 
the mercury used can be recovered with a high degree of purity 
and finally reused, which still makes it an interesting choice in 
some analytical applications, making it the target of various 
studies, even today [14, 15].  

In terms of voltammetry, for the determination of metals 
using the mercury electrode, there is an extreme overlap of 
some peaks that undergo reduction or oxidation in near 
potentials. In order to overcome these difficulties, associating 
multivariate calibration methods and electrochemical 
techniques has become important for analytical 
determination, which can be found in several studies in the 
relevant literature [15-19].   

In this study, investigations continued to develop methods 
for the simultaneous determination of metals in beverages, 
specifically cachaça, being used in this study, in addition to 
artisanal cachaças, cachaças made industrially, expanding 
the investigations on the quality of the products sold.  Also in 
this study, the PLS - Neural method was introduced, and 
compared with PLS and artificial neural networks. The PLS-
Neural method corresponds to a hybrid method between the 
PLS method and artificial neural networks. Thus, this study 
seeks to establish and verify which of these methods is 
suitable for analytical purposes in terms of simultaneous 
determination of these metals 

2. Material and Methods 

2.1 Reagents and Solutions  

Analytical-grade nitric acid (Neon®) was double distilled. 
All the other reagents were of analytical grade and used 
without prior purification. Ultrapure water (resistivity of 18 
Mohm.cm -25 °C) was obtained from a reverse osmosis 

purification system (Quimis®, model Q-342, SP, Brazil) and 
used throughout.  The standard solutions of Cu2+, Zn2+ and 
Cd2+ (1000 mg L -1) (Qhemis®) were properly diluted to build 
the calibration curves for ICP OES analysis. Sodium acetate 
and acetic acid (Merck®) were also employed to prepare a 
solution 1.00 mol L-1 and pH 4.7.  

 

2.2 Apparatus 

The experiments by ICP OES were carried out on Optima 
7000 equipment, Perkin Elmer®, equipped with shear gas 
(removal system of the cold plasma zone), solid state detector 
(CCD), double vision, and an optical system with pre-purging. 

The electrochemical square wave anodic stripping 
experiments were performed using a computer-controlled 
Metrohm® 797 Computrace Voltammetric Analyzer using 
software 797 VA computrace version 1.2 for controlling the 
experiment and for acquiring data.  

 

2.3 Samples 

Handmade and industrialized cachaça samples coming 
from several municipalities in the Brazilian States of Espírito 
Santo, São Paulo and Minas Gerais were used in this study. 
The percentage of alcohol found in the cachaça samples 
ranged from 38 to 50%.   A total of 75 samples was analyzed. 
The samples, which come from different manufacturers, were 
obtained exclusively at commercial establishments.  

 

2.4 Spectrometric procedure   

2.4.1 Preparation of the sample for analysis in ICP OES 

The same procedure performed in the previous study [13] 
was adopted here.  Thus, all the materials were washed with 
detergent and decontaminated in a vessel containing 5% nitric 
acid solution for 24 hours. For determining the metals in 
cachaça, the volume of the cachaça samples was reduced by 
50%. Then, 25.00 mL of the sample obtained was acidified 
with 0.015 mol L-1 nitric acid previously distilled, completing 
the volume up to 50.00 mL solution with osmosis water. Next, 
the samples underwent analysis by ICP OES.  

 

2.4.2 ICP OES analysis 

The operational parameters used in the analyses with ICP 
OES are listed in Table 1. 

  

Table 1. Operational parameters utilized in ICP OES analysis. 

Parameters Conditions 

Vision Axial 
Nebulizer Gemcone 
Nebulization chamber Cyclonic for aqueous 
Injector Alumina 
Purge of the pre-optical system High 
Sample introduction Flow (ml/min) 1,57 mL.min-1 
Plasma power (W) 1257 W 
Nebulization gas flow rate (l/ min) 1.25 L min-1 

Spectral line  

Cu 327.393 nm 
Cd 226.502 nm 
Zn 206.200 nm 

 

Some parameters have been optimized [20]: introduction 
of the sample, power and nebulization flow. The measures 
found in the   ICP OES had their responses associated with the 
intensity in area mode for the metals analyzed. Calibration 
curves for each metal were constructed separately using the 
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standards mentioned in 2.1 to later find the concentrations of 
the analyzed metals.  The concentrations of the curves 
(working range) are: 0.1 to 10.0 mg L-1 for copper, 0.05 to 1.50 
mg L-1 for zinc, and 0.005 to 0.5 mg L-1 for cadmium. The 
quality of this method [21, 22], in which the calibration curve 
linearity and matrix effect; determination of the limit of 
quantification and detection; accuracy and precision were 
analyzed, was thoroughly assessed in a previous study [13].  

 

2.5 Procedure for voltammetric analysis 

For the construction of a chemometric model, the square-
wave anodic redissolution voltammetry technique was used, 
correlating the data obtained by this technique 
(voltammograms) with the concentrations determined by ICP 
OES (reference method). As the working electrode, a hanging 
mercury drop electrode was adopted. The study was carried 
out in a conventional 25-mL electrochemical cell, also having 
an auxiliary platinum wire electrode with a geometric area of 
1 cm2 and an Ag /AgCl reference electrode (KCl 3.0 mol L-1). 
For the analyses, the samples were inserted "in situ" about 
20.00 mL in acetate solution of 1.00 mol L-1 (supporting 
electrolyte). The square-wave anodic redissolution 
voltammetry analysis conditions were: electrodeposition time 
of 50s, amplitude of 0.05 V, velocity of 0.1 V s-1 and frequency 
of 100 Hz. The potential range was from -1400 mV to 200 mV. 
These parameters were set after previous studies under 
controlled conditions.  Every measurement was performed at 
room temperature (25 oC).   

 

2.6 Data Multivariate Analysis 

The different chemometric models: Partial least squares 
(PLS), artificial neural networks (ANN) and PLS-Neural that 
corresponds to a hybrid between PLS and the neural network 
used here have their principles found in several examples of 
the literature [23,24,25,26]. 

Root mean squared error of prediction – RMSEP and 
coefficient of determination - R2, were used in order to 
evaluate the performance of the proposed multivariate 
methods. 

        (1)        (2) 

Wherein  is the true concentration of the analyte in the 

sample i;  represents the estimated concentration of the 

analyte in the sample i;   is sample i’s average value; and n 
is the total number of samples used in the prediction sets 

3. Results and Discussion  

3.1 Analysis by using the reference method – ICP OES 

The quality of the reference method based on ICP OES was 
verified in a previous study [13] and shows that the method is 
suitable for the determination of metals, specifically copper, 
zinc and cadmium in the analyzed drink: cachaça.  Briefly: it 
was observed that the method had no matrix effect. Linear 
calibration curves were obtained in the working range used for 
each metal, with Cu range of 0.1 to 10.0 mg L-1; for zinc the 
range of 0.05 to 1.5 mg L-1 and for cadmium 0.005 to 0.5 mg 
L-1, with a coefficient of determination of 0.999. In addition, 

the recovery tests showed values as expected and the 
quantification limits for metals correspond to 0.001 mg L-1 for 
cadmium, 0.020 mg L-1 for copper and 0.011 mg L-1 for zinc. 

Table 2 shows the concentration range found for the 
samples analyzed in terms of elements copper, zinc and 
cadmium. For this study, industrial and artisanal samples 
were used. The specified quality limit allowed by Brazilian law 
for copper is up to 5.0 mg L−1,  0.2 mg L−1 is the maximum limit 
allowed for the cadmium element and, even though there is no 
specification for zinc, the limit of 5.0 mg L-1, used for drinking 
water was used here. The quality of artisanal cachaças has 
already been reported in a previous study, but it can be briefly 
said that this type of sample presents a problem in relation to 
copper contamination due to its production method. For 
industrial samples, this type of contamination is less 
significant but still present. Of the 75 samples analyzed, about 
20% presents level of copper above the 5.0 mg L -1. It was 
found that all concentrations of the other metals (cadmium 
and zinc) were below the limits permitted.  

 

Table 2.  Concentrations values of metals (mg L-1) obtained by 
ICP OES. 

Metal Concentration range value 
(Cachaça Samples) 
(mg L-1) 

Cu  0.32 (±0.02)   -   9.86 (± 0.40) 
Zn  0.073 (± 0.004) - 1.22 (± 0.06) 
Cd  0.030 (±0.008) -   0.17 (± 0.04) 

 

3.2 Multivariate method (Data) 

3.2.1 Data used in the construction of the chemometric models 
(PLS, ANN and NNPLS) 

Independent variable – x:  current at different potentials, 
obtained in the square wave anodic stripping voltammetry and 
the metal concentration values obtained by ICP OES 
(dependent variable – y). The data obtained were arranged in 
matrix form: matrix X and matrix y, respectively.  Three 
independent models for zinc, cadmium and copper were 
obtained.  

 

3.2.2 Multivariate methods 

In the calibration phase, anomalous samples were 
identified and removed and after adequate models were 
constructed. About 70% of the samples were used in the 
calibration phase.   

PLS model: The data arranged as a matrix went through 
pretreatment. The pretreatments used for data from 
independent variables (matriz X) were: smoothing and second 
derivative of the voltammogram current values, applying 
Savitzky-Golay algorithm and after that these data were 
scaled. The data from dependent variables (matrix y) were 
scaled. Five (5) latent variables corresponding to about 90% 
of the total necessary information were used to build the PLS 
model for copper and zinc; and eight (8) latent variables that 
are responsible for 85% of the total information used for the 
construction of the PLS model corresponding to cadmium in 
samples of cachaças. The number of latent variables used in 
these models was chosen using complete leave-one-out 
cross-validation.  

ANN model – In order for constructing the model, the data 
from independent variables were submitted to mathematical 
pretreatments: The data were reduced by applying principal 
component analysis. Six major components (scores) were 
used in each model, which represents more than 90% of the 
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explained variance for all metals analyzed.  The scores were 
normalized between -1 and 1. The data from dependent 
variables were also normalized between -1 and 1. All the ANN 
models were based on three-layered multi-layer perceptron 
(MLP) architecture by using Marquardt-Levenberg algorithm 
that adapts very well to small neural networks.  The 
normalized scores of the main components are the data input 
of neural network, and then, an input layer with six neurons 
was used.  A hidden layer with eleven neurons and an output 
layer with one neuron (metal concentrations) compose the 
neural network architecture.  For training the neural network, 
a tan-sigmoidal function was used in the hidden layer as a 
transfer function. In turn, a linear function was used the output 
layer. A maximum number of one thousand iterations, and the 
error value used as criteria for stopping the training of the 

neural network was 1 x 10−2. Criteria like number of neurons in 
hidden layer, activation functions used, and iteration number 
were chosen by using a trial-and-error process that took into 
account the nature of the data to be modeled until their best 
combination was found. The correct fit of the neural model 
was evaluated. To this end, the outputs were compared to the 
expected concentration values. The weights of the 
connections between neurons were modified as per the 
training algorithm rules until a perfect fit is found. By 
successfully completing training, cases in which the mean 
square error expected is found were understood.  In this case, 
the neural network is considered trained. 

PLS - Neural – This model employed second derivative and 
scaled for the independent variables and the data for the 
dependent variables were scaled, and five (5) latent variables 
were used to determine copper, zinc and seven (7) to 
determine cadmium, above 87% of the data variance was 
obtained for all cases. PLS focuses on extracting main 
components or more specifically latent variables by 
maximizing the correlations between in- and output data 
(scores called u and t, respectively). In PLS- Neural, the best 
relationship between u and t was set by a neural network. This 
study utilized an input layer with one neuron (one score at a 
time), a hidden layer with three neurons and an output layer 
with one neuron. The transfer function used between the 
hidden and output layers was sigmoidal and for the output 
layer the transfer function used was linear.  In PLS-Neural, a 
multiple input-multiple output (MIMO) network regression is 
reduced to numerous single input–single output (SISO) 
regressions. In other words, each neural network model within 
the PLS framework needs to use much fewer weights. Thus, 
the error surface consists of fewer local minima.  

 

3.2.3 Evaluation of the models built 

It was evaluated the relative performance of the PLS, ANN 

and PLS Neural models in terms of root-mean square error in 
calibration (RMSEC) and coefficient of determination (R2). 
Adequate models were obtained as verified by the values of 
R2 and RMSEC.  The coefficient of determination R2 for all 
metals analyzed has value around of 0.9. RMSEC has a low 
and adequate value. This denotes that the predicted and 
expected values are in compliance.  These data are shown in 
Table 3.  

 

3.3 Prediction phase 

These models were used to determine the concentration 
of copper, zinc and cadmium metals in the cachaças, using 
other samples which constitute the prediction phase.  At this 
stage, about 30% of the samples were used. The data used in 
the prediction underwent the same pretreatment used before 
in the calibration phase for each model analyzed.  The root-
mean square error in prediction (RMSEP) and coefficient of 
determination (R2) for the several models are also shown in 
Table 4. The coefficient of determination R2 for all metals 
analyzed has value around of 0.9, which shows that the 
predicted and expected values are consistent. It can be seen 
that RMSEC (table 3) and RMSEP (table 4) present similar 
values for the models constructed, which denotes no 
overfitting of these models.                                                         

 

Table 3. Parameters of the models (calibration) using hanging 
mercury drop electrode 

                     PLS                           ANN                  PLS - Neural 

 Cu Zn Cd Cu Zn Cd Cu Zn Cd 
R2 0.9

77 
0.9
87 

0.9
93 

0.9
90 

0.9
73 

0.9
02 

0.9
69 

0.9
96 

0.9
06 

RM
SEC 

0.1
35 

0.0
68 

0.0
035 

0.0
42 

0.0
76 

0.0
028 

0.1
10 

0.0
67 

0.0
037 

 

Table 4. Parameters of the models (validation) using hanging 
mercury drop electrode 

                     PLS                          ANN                   PLS - Neural 

 Cu Zn Cd Cu Zn Cd Cu   Z  Cd 
R2 0.9

84 
0.9
77 

0.9
12 

0.9
92 

0.9
81 

0.9
95 

0.9
78 

0.8
90 

0.9
07 

RM
SEP 

0.1
40 

0.0
64 

0.0
040 

0.0
43 

0.0
78 

0.0
032 

0.1
27 

0.0
60 

0.0
045 

 

Fig. 1-3 shows the comparative graphs of predicted versus 
expected concentrations for the considered metal for testing 
subsets using the three calibration models. 

It is possible to observe that the association of 
chemometric methods with voltammetric data produced good 
results for all the metals analyzed in prediction for cachaças 
samples.

 

      
Fig. 1. Predicted versus expected concentrations for copper. (a) PLS model (b) ANN Model and (c) PLS-Neural. 

 

(a) (b) (c) 
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Fig. 2. Predicted versus expected concentrations for zinc (a) PLS model (b) ANN Model and (c) PLS-Neural 

 

     
Fig. 3. Predicted versus expected concentrations for cadmium (a) PLS model (b) ANN Model and (c) PLS-Neural. 

 

3. 4 Comparison of methods:  PLS, ANN and PLS_Neural 

In order for comparing the methods, the F test was carried out 

based on RMSEP values.  This test, at the 95% confidence 

level presents a value for F = 1.94 (24 samples). By applying 

the test, it was verified that there is no statistical difference 

among methods PLS and PLS- Neural for zinc and cadmium. 

After that, PLS was compared with ANN, and no difference 

was also found for these methods in relation to metal 

determination. The calculated F values were lower than the 

theoretical values for these metals when the methods were 

compared in both situations.   In relation to copper, there are 

no statistical difference for this metal by using PLS and PLS-

Neural, based on F test. However, it was observed that the 

determination of copper using neural networks shows better 

results for the determination of copper and it differs 

statistically from other methods, being the former more 

suitable for this determination. However, all methods have a 

relative error within what is statistically adequate.  Overall, the 

methods presented good results and any of them can be used 

for the determinations. 

4. Conclusions  

The simultaneous quantification of copper, zinc and 
cadmium in cachaças using a hanging mercury drop electrode 
and considering the combination of the square wave 
voltammetry and the chemometric methods presented 
satisfactory results. Therefore, the proposed methodologies 
can be used for determining metals in cachaças. An upside to 
these methods is that they can replace costly maintenance 
and performance methodologies such as ICP OES. Moreover, 
these methodologies are simple and fast and can be an 
effective tool for routine analysis for the quality control of 
these products. 
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