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Abstract: An integrated approach physicochemistry and structures property relationships has been carried out 
to study the odorant molecules retention/release phenomenon in the water. This study aimed to identify the 
molecular properties (molecular descriptors) that govern this phenomenon assuming that modifying the 
structure leads automatically to a change in the retention/release property of odorant molecules. 
ACD/ChemSketch, MarvinSketch, and ChemOffice programs were used to calculate several molecular 
descriptors of 51 odorant molecules (15 alcohols, 11 aldehydes, 9 ketones and 16 esters). A total of 37 molecules 
(2/3 of the data set) were placed in the training set to build the QSPR models, whereas the remaining, 14 
molecules (1/3 of the data set) constitute the test set. The best descriptors were selected to establish the 
quantitative structure property relationship (QSPR) of the retention/release property of odorant molecules in 
water using multiple linear regression (MLR), multiple non-linear regression (MNLR) and an artificial neural 
network (ANN) methods. We propose a quantitative model according to these analyses. The models were used 
to predict the retention/release property of the test set compounds, and agreement between the experimental 
and predicted values was verified. The descriptors showed by QSPR study are used for study and designing of 
new compounds. The statistical results indicate that the predicted values are in good agreement with the 
experimental results. To validate the predictive power of the resulting models, external validation multiple 
correlation coefficient was calculated and has both in addition to a performant prediction power, a favorable 
estimation of stability. 

 
Keywords: odorant molecules; retention/release; quantitative structure property relationship; multiple linear 
regression; artificial neural network 
 

1. INTRODUCTION 

The concept of quality of food commonly 
includes four criteria: Safety, Health, Flavor and 
Services. Each of these key words refers to the notions 
of product safety, their nutritional value and health, the 
organoleptic criteria of taste, odor and all the services 
associated with the food product. It can be said that if 
the notions of safety and health are present in the mind 
of the consumer during a purchase, the organoleptic 
dimension of a product remains essential [1]. The 
flavor compounds present in a product must be 
sensorially perceived to be released from the food 
phase. The release of odorant molecules from the solid 
or liquid food matrix and their passage through the 
vapor phase is therefore the first step before a possible 
perception due to the activation of the olfactory 
receptors present in the nasal cavity and to the 

activation of complex neurophysiological events [2]. 

Retention/release property of odorant 
molecules is a phenomenon primarily dependent on the 
interactions between the solute and the stationary phase 
of molecules, which included directional force, 
induction force, dispersion force and hydrogen bond 
[3]. These forces can be related to the topological 
structures; therefore, it was possible to predict the 
solute retention from molecular descriptors.  

Molecular descriptors theoretically calculated 
can be used to construct mathematical models, being 
related to molecular properties. In this insight, the 
Quantitative Structure Property Relationships (QSPR) 
[4] refers to obtain a robust and predictive 
mathematical model involving response variable with 
molecular descriptors, calculated through molecular 
modeling methods. 
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The purpose of this work is to study the 
retention/release property of odorant molecules in the 
water by varying their chemical class and molecular 
structure (linear, branched and/or unsaturated) using 
QSPR chemical modeling methods 

 

2. MATERIAL AND METHODS 

This QSPR study was investigated for 

predicting, interpreting studied property and for 
designing new compounds by using linear and 
nonlinear methods. It consists of four stages: selection 
of data set and generation of molecular descriptors, 
descriptive analysis, statistical analysis and suggestion 
of novel compounds. 

The methodology used in this QSPR study is as 
follows (Fig.1): 

 

 
Figure 1. Flow chart of the methodology used in this work. 

 

Experimental data set 

In this study, we selected 51 odorant molecules 
with properties reported in the literature [5] to provide 
a diversified set of chemical families (alcohols, 
aldehydes, ketones and esters) and chemical structures 
(linear, unsaturated and unsaturated-branched). The 
fragrant molecules were selected by their structures 
without taking into account their organoleptic qualities. 
The list of molecules and the Log(1/K) values are 
displayed in Table 1. 

The retention/release property of the selected 
odorant molecules was examined using pure water, this 
property was quantified by the vapor-liquid partition 
coefficient K, and more precisely by the Log(1/K) 
values [5]. 

A total of 37 molecules were placed in the 
training set to build the QSPR models, whereas the 
remaining, 14 molecules constitute the test set. The 
division was carried out by random selection using the 
SPSS 19.0 statistical package [6].  

 

Molecular descriptor generation 

A wide variety of molecular descriptors were 
calculated using ACD/ChemSketch, MarvinSketch 
and ChemOffice software [7-9] to predict the 
correlation between these descriptors and the 
retention/release property of the molecules studied 
(Table 2). The Table S1 and Table S2 show values of 
these descriptors for each molecule studied. 
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Table 1. List of aroma compounds. 
No. Molecule name Log(1/K) No. Molecule name Log(1/K) 

1 Hexan-1-ol 3.153 27 Heptan-2-one 2.338 
2 Octan-1-ol 2.629 28 3-Methylpentan-2-one 2.447 
3 Nonan-1-ol 2.330 29 4-Methylpentan-2-one 2.361 
4 2-Methylpentan-1-ol 3.097 30a 5-Methylhexan-2-one 2.338 
5 3-Methylpentan-3-ol 2.523 31 2-Methylheptan-3-one 2.081 
6a Heptan-2-ol 2.857 32 5-Methylheptan-3-one 2.178 
7 2-Ethylhexan-1-ol 2.721 33 2,6-Dimethylheptan-4-one 1.968 
8 Octan-3-ol 2.582 34 Hex-5-en-2-one 2.586 
9 3,7-Dimethyloctan-1-ol 2.086 35a 4-Methylpent-3-en-2-one 2.488 

10 (4Z)-Hex-4-en-1-ol 3.480 36a Ethyl propanoate 2.244 
11 (4Z)-Hept-4-en-1-ol 3.283 37a Ethyl butanoate 2.135 
12 Hex-1-en-3-ol 3.090 38 Ethyl pentanoate 2.078 

13 6-Methylhept-5-en-2-ol 3.004 39 Ethyl hexanoate 1.983 
14 Linalool 2.690 40a Butyl pentanoate 1.894 
15a Nerol 2.886 41 Ethyl heptanoate 1.898 
16a Hexanal 2.204 42a Ethyl 2-methylpropanoate 2.019 
17 Heptanal 2.116 43 Isoamylacetate 2.078 
18 Octanal 2.030 44 Isobutylisovalerate 1.868 
19a 2-Ethylbutanal 2.099 45 2-Methylbutyl 2-methylbutanoate 1.863 
20 2-Ethylhexanal 1.935 46a Ethylcrotonate 2.348 

21 3,5,5-Trimethylhexanal 1.897 47 Isopropyltiglate 2.046 
22a (2E)-Hex-2-enal 2.695 48 Propyl (2E)-2-methylbut-2-enoate 2.160 
23 (4Z)-Hept-4-enal 2.477 49a Isobutylangelate 1.937 
24 (2E)-2-Methylbut-2-enal 2.699 50 Isoamyltiglate 1.960 
25 (2E)-2-Methylpent-2-enal 2.480 51 Hexyltiglate 1.909 
26a 2-Isopropyl-5-methyl-2-hexenal 1.817    

aTest Set. 

 

Table 2. Calculated topological molecular descriptors. 
Software Descriptors Abbreviation Software Descriptors Abbreviation 

 
 
 
 
 
 
 
 
 
 

ChemOffice 

Heat of formation 
(KJ mol-1) 

𝐻𝐻∘  
 
 
 
 

ChemSketch 

Percent ratios of 
hydrogen 

H% 

Gibbs free energy 
(KJmol-1) 

𝐺𝐺 Percent ratios of 
oxygen 

O% 

Ideal gas thermal 
capacity (J mol-1 K-1) 

IGTC Percent ratios of 
carbon 

C% 

Melting point (Kelvin) 𝑇𝑇 Surface tension γ 
Critical 

temperature(Kelvin) 
CT Index of refraction 𝑛𝑛 

Boiling point(Kelvin) TB Density 𝑑𝑑 
Critical pressure (Bar) CP  

 
 
 

MarvinSketch 

Log 𝑃𝑃 Log 𝑃𝑃 
Henry’s law constant 𝐾𝐾H Winner index 𝑊𝑊 

Total valence 
connectivity 

TVC Number of H-Bond 
acceptors 

NHA 

Partition coefficient PC Number of H-Bond 
donors 

NHD 

Number of rotatable 
bonds 

NRB Balaban index 𝐽𝐽 

Shape coefficient 𝐼𝐼 Polar surface area 
(A°) 

PSA 

Sum of valence degrees SVD  
Total connectivity TC 

 

Statistical analysis 

In this step, Matrix of correlation was used to 
determine the non-linearity of variables (descriptors) 
and to select the descriptors correlated with the 
property [10]. 

Consequently, Multiple Linear Regression 
(MLR) is used to study the relationship between a 
dependent variable and several independent variables; 
it minimizes the differences between actual values and 
predicted values and has been used to select the 
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descriptors to be used as inputs in Multiple Non-Linear 
regression (MNLR) and Artificial Neural Network 
ANN (Multi-Layer Perceptron (MLP) and Radial Basis 
Function Networks (RBF) types). Multiple linear and 
nonlinear regressions were used to predict the effects 
on the property, the equations were justified by the 
correlation coefficient (r), the mean square error 
(MSE), the Fisher value (F) and the significance level 
(p) [11]. 

MLR, MNLR, and ANN are generated using the 
SPSS 19.0 statistical package [2]. 

Cross-Validations, the most commonly used 
techniques for internal validation, are statistical 
techniques in which different proportions of chemicals 
are iteratively held-out from the training set used for 
model development (an optimal parameters K selection 
step) and “predicted” as new by the developed model 
in order to verify internal “predictivity”. In this work, 
the Leave-One-Out is used, this procedure successively 
removes one molecule from the training set containing 
37 molecules. A QSPR model is constructed on an "36" 
set of compounds and the molecule removed is 
predicted by the model. This procedure is repeated 
"37" times in order to predict the property of all 
molecules [12]. 

Y-randomization, randomly scrambling the 
responses, is another internal validation approach that 
must be used in parallel with Cross-Validations, and 
must always be applied to test the significance of the 
derived QSPR model, highlighting the presence of 
apparent models, obtained only by chance correlation 
[12]. We performed in this work 100-y-randomization 
tests for the MLR and MNLR models. In this test, 
random QSPR models are generated by randomly 
shuffling the dependent variable while keeping the 
independent variables as it is. The new QSPR models 
are expected to have significantly low r2 and r2cv 
values for several trials, which confirm that the 
developed QSPR models are robust. 

The permutation test proved to be a good tool 
for detecting the presence of the trends in residuals of 
multivariate regression models. The quality of the 
permutation test depends on the number of 
permutations used. A total of 500,000 permutations are 
enough for reproducibility of the test results [13]. In 
this work we used the Matlab code for the permutation 
test algorithm presented in the literature [13]. When the 
p-value for the test is smaller than the level of 
significance adopted (α = 0.05), the residuals are not 
random. Otherwise, there are no trends in the residuals 
[13]. 

Other useful parameters to be considered are the 
RMSEP (Root Mean Squared Errors of prediction) 
calculated on test set. The r and rcv values are good 
tests for evenly distributed data, but they are not always 
reliable for unevenly distributed data sets; instead 
RMSEP provide a more reliable indication of the 
fitness of the model, independently of the applied 
splitting. The randomization t-test for the comparison 
of the predictive accuracy (RMSEP) of methods is 
useful in this case. In this work we used the Matlab 
code  for the randomization t-test algorithm presented 
in the literature [14]. When the p-value for the test is 
smaller than the level of significance adopted (α = 
0.005 for 199 randomization trials) [14], the difference 
between methods is significant. 

 

3. RESULTS AND DISCUSSION 

Data set for analysis 

A QSPR study was carried out for a series of 51 
odorant molecules, as indicated above, to determine a 
quantitative relationship between the structure and the 
property studied. The values of the 26 descriptors are 
shown in Table S1 and Table S2, and the correlations 
between this descriptors and the Log(1/K) value are 
shown in Table 3 as a matrix of correlation.  

 

Multiple Linear Regressions (MLR) 

The results of the PCA analysis are used to 
select the input data of the MLR. So, at the beginning 
we have eliminated all variables (descriptors) whose 
correlations are small (not significant, r ≤ 0.3) with 
respect to the dependent variable (Log(1/K)). In order 
to reduce the redundancy existing in our data matrix, 
the highly correlated descriptors (r ≥ 0.9) and which 
have the low correlation coefficient value in relation to 
the dependent variable have been excluded (Table 3). 

The VIF (Variance Inflation Factor) was 
defined as 1/(1-r2), where r was the multiple correlation 
coefficient for an independent variable against all other 
descriptors in the model. The models with a VIF 
greater than 5 were unstable and were eliminated; the 
models with VIF values between 1 and 4 may be 
accepted. 

At this stage VIF values greater than 5 were 
found, then to improve the results (Table 4), the highly-
correlated descriptors (r ≥ 0.8) and which have the low 
value of correlation coefficient with the dependent 
variable were eliminated (Table 4). 
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 Table 3. Matrix of correlation. 
 Log(1/k) H° G IGTC T CT TB CP KH TVC PC NRB I SVD TC H% O% C% γ n D log P W NHD J PSA 

Log(1/K) 1                          

H° 0.596 1                         

G 0.514 0.918 1                        

IGTC -0.489 -0.572 -0.214 1                       

T 0.033 -0.240 0.065 0.667 1                      

CT -0.138 -0.126 0.180 0.773 0.627 1                     

TB -0.053 -0.214 0.131 0.835 0.766 0.958 1                    

CP 0.628 0.633 0.314 -0.969 -0.587 -0.720 -0.745 1                   

KH 0.913 0.661 0.660 -0.334 0.147 0.018 0.104 0.491 1                  

TVC 0.506 0.453 0.294 -0.672 -0.289 -0.709 -0.612 0.742 0.406 1                 

PC -0.516 -0.549 -0.206 0.966 0.659 0.817 0.851 -0.942 -0.381 -0.680 1                

NRB -0.411 -0.592 -0.325 0.797 0.762 0.675 0.741 -0.790 -0.380 -0.611 0.858 1               

I -0.043 0.080 0.123 0.029 -0.066 0.010 -0.003 -0.015 -0.050 0.162 0.053 -0.108 1              

SVD -0.617 -0.611 -0.451 0.737 0.219 0.629 0.546 -0.801 -0.513 -0.882 0.716 0.526 -0.078 1             

TC 0.459 0.542 0.236 -0.921 -0.640 -0.840 -0.851 0.938 0.344 0.841 -0.931 -0.845 0.058 -0.779 1            

H% 0.272 0.050 0.286 0.273 0.585 0.106 0.324 -0.144 0.302 0.406 0.256 0.301 0.142 -0.434 -0.109 1           

O% -0.266 -0.534 -0.794 -0.246 -0.451 -0.374 -0.426 0.137 -0.417 -0.208 -0.234 -0.114 -0.192 0.303 0.129 -0.706 1          

C% 0.232 0.624 0.861 0.208 0.355 0.415 0.408 -0.118 0.403 0.121 0.199 0.042 0.185 -0.226 -0.120 0.529 -0.975 1         

γ 0.275 -0.225 0.007 0.551 0.764 0.722 0.833 -0.431 0.328 -0.413 0.587 0.660 -0.133 0.291 -0.640 0.357 -0.196 0.122 1        

n 0.344 0.194 0.425 0.464 0.476 0.785 0.786 -0.340 0.531 -0.435 0.434 0.226 -0.034 0.377 -0.501 0.084 -0.394 0.446 0.719 1       

D -0.284 -0.595 -0.633 0.303 -0.030 0.287 0.229 -0.360 -0.277 -0.692 0.287 0.225 -0.201 0.772 -0.434 -0.649 0.734 -0.673 0.302 0.273 1      

log P -0.506 -0.416 -0.071 0.928 0.603 0.771 0.789 -0.913 -0.331 -0.601 0.932 0.728 0.097 0.673 -0.850 0.260 -0.368 0.358 0.429 0.435 0.159 1     

W -0.494 -0.541 -0.240 0.936 0.566 0.823 0.818 -0.918 -0.349 -0.769 0.919 0.747 0.000 0.872 -0.887 -0.001 -0.090 0.109 0.522 0.521 0.480 0.884 1    

NHD 0.734 0.218 0.368 0.085 0.501 0.198 0.404 0.115 0.809 0.282 0.038 0.062 -0.037 -0.358 -0.009 0.658 -0.445 0.325 0.654 0.547 -0.209 -0.014 -0.051 1   

J -0.542 -0.390 -0.229 0.542 -0.023 0.182 0.181 -0.564 -0.357 -0.334 0.432 0.030 0.126 0.601 -0.363 -0.124 0.049 -0.019 -0.141 0.162 0.338 0.532 0.505 -0.224 1  

PSA -0.316 -0.819 -0.829 0.382 0.089 0.185 0.217 -0.418 -0.363 -0.562 0.360 0.377 -0.210 0.698 -0.445 -0.407 0.748 -0.767 0.357 0.108 0.918 0.196 0.489 -0.111 0.313 1 
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Table 4. Multicollinearity statistics. 
  𝐻𝐻∘ KH n J 

Tolerance 0.489 0.348 0.620 0.724 

VIF 2.043 2.876 1.614 1.381 

 

The relationship obtained using this method 
corresponds to the linear combination of these 
descriptors: Heat of formation (H°), Henry’s law 
constant (KH), Index of refraction (n) and Balaban 
index (J). 

The resulting equation is as follows: 

𝑳𝑳𝑳𝑳𝑳𝑳�𝟏𝟏
𝑲𝑲
� = 5.718 − 1.934 × 10−4 × H° + 0.588 ×

𝐾𝐾H − 2.836 × n − 0.268 × J         (Equation 1)         

N = 37; r = 0.942; r2= 0.886; MSE = 0.026; F = 62.460; 
P < 0.0001. 

In this equation, N is the number of compounds, 
r is the correlation coefficient, r2 is the coefficient of 
determination, MSE is the mean squared error, F is the 
Fisher's criterion and P is the significance level. 

It is observed that the correlation coefficient r is 
very high, and the mean squared error value (MSE) is 

low, which makes it possible to indicate that the model 
is more reliable. A P value much smaller than 0.05 
indicates that the regression equation is statistically 
significant, we can conclude, with confidence, that the 
model provides a significant amount of information 
[15]. 

The predicted Log(1/K) values calculated from 
equation (1) are given in Table 5 in comparison to the 
observed values.  

The correlation between the predicted and 
observed Log(1/K) and the residue values are shown in 
Fig. 2.  

The residuals should not show any trend. A 
trend would indicate that the residuals were not 
independent. In the permutation test, the MLR model 
showed p-value more than the significance level of 
0.05, with result of 0.4999. In this case, the residuals of 
the MLR model were random. 

The descriptors proposed in equation (1) by 
MLR are therefore used as input parameters in the 
multiple non-linear regressions (MNLR) and the 
artificial neural network (ANN) [16]. 

  

Figure 2. Graphical representation of calculated and observed property and the residues values calculated by 
MLR (training set in blue; test set in red). 

 

Multiple Non-Linear Regression (MNLR) 

We also used multiple non-linear regression 
model technique to quantitatively improve the 
structure–property relationships by accounting for 
several parameters. MNLR is the most commonly used 
tool for the study of multidimensional data. We applied 
it to the data matrix constituted from the descriptors 

proposed by the MLR corresponding to the set of 37 
molecules [17]. 

The resulting equation is as follows:  

Log �1
K
� = 11.497 + 1.008 × 10−4 × H° + 0.138 ×

log(−H°) + 1.377 × KH − 4.279 × log(KH) −
5.430 × n − 2.101 × J + 0.309 × J2        (Equation2) 
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N = 37; r = 0.957; r2= 0.917; MSE = 0.021; F = 45.568; 
P < 0.0001. 

The predicted Log(1/K) values calculated from 
equation (2) are given in Table 5 in comparison to the 
observed values. The correlation between the predicted 

and observed Log(1/K) and the residue values are 
shown in Fig. 3. In the permutation test, the MNLR 
model showed p-value more than the significance level 
of 0.05, with result of 0.3872. In this case, the residuals 
of the MNLR model were random. 

 

  
 

Figure 3. Graphical representation of calculated and observed property and the residues values calculated by 
MNLR (training set in blue; test set in red). 

 
 

Artificial Neural Networks (ANN) 

In order to increase the probability of a good 
characterization of the molecules studied, the Artificial 
Neural Networks (ANN) can generate a predictive 
model of the QSPR relationship between the 
descriptors obtained from the MLR and the observed 
property. 

In this study, we used two types of artificial 
neural networks: Multi-Layer Perceptron (MLP) and 
Radial Basis Function Networks (RBFs). 

Multi-Layer Perceptron (MLP): The ANN 
model has aroused great interests as its universal 
function approximators are capable of mapping any 
linear or nonlinear functions. The multi-layer 
perceptron (MLP) neuronal network model is a 
supervised neural network based on the original simple 
perceptron model with back propagation for training 
the network. It commonly consists of an input layer of 
source nodes, an output layer and one or more hidden 
layers of computation nodes (neurons) that increasing 
the learning power of the MLP model. The number of 
hidden neurons determines the learning capacity of 
MLP network. It is most recommended to select the 
network which performs best with the least possible 
number of hidden neurons. 

The property model computed by the MLP 

method was developed using the properties of several 
molecules studied (Fig. 4). The correlation between the 
predicted and observed Log(1/K) and the residue 
values are shown Fig.5. In the permutation test, the 
MLP model showed p-value more than the significance 
level of 0.05, with result of 0.2856. In this case, the 
residuals of the MLP model were random. 

The predicted Log(1/K) values calculated by 
MLP method are given in Table 5 to comparison to the 
observed values.  

Radial Basis Function Networks (RBFs): RBF 
neural networks are neural networks based on localized 
basis functions and iterative function approximation. In 
terms of structure, a RBF is composed of three layers, 
namely an input layer, an output layer, and a hidden 
layer (see Fig. 6). These types of networks are of fixed 
architecture with a single hidden layer; this is while 
MLP may be of more than one hidden layers. Indeed, a 
RBF represents a special case of a MLP [18]. Owing to 
their simple design, extremely strong tolerance to input 
noises, and fast yet pervasive training capabilities, 
these networks have attracted a large deal of attention. 
In RBF, there is a single input layer wherein no 
processing is undertaken. The hidden layer, however, 
contains radial basis functions, with the output layer 
solely containing collectors. In fact, the output layer 
linearly combines all outputs from neurons in the 
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hidden layer to generate the network output. Compared 
to MLP networks, this type of network requires larger 
number of neurons, even though they enjoy shorter 

designs, with the principal distinction being the 
application of activation functions to be used by 
neurons [19]. 

 

 
Figure 4. The architecture of the MLP method used (four input variables, one neuron in the hidden layer and one 

neuron to the output layer). 
 
 

  

Figure 5. Graphical representation of calculated and observed property and the residues values calculated by 
MLP method (training set in blue; test set in red). 

 

The property model computed by the RBF 
method was developed using the properties of several 
molecules studied (Fig. 6). The correlation of the 
predicted and observed property and the residue values 
are illustrated in Fig. 7. In the permutation test, the 
RBF model showed p-value more than the significance 
level of 0.05, with result of 0.4512. In this case, the 
residuals of the RBF model were random. 

The predicted Log(1/K) values calculated by RBF 
method are given in Table 5 in comparison to the 
observed values. 

 

Internal Validation 

Cross-Validation: The Cross-Validation 
statistical procedure can be used to evaluate the 
predictive power of QSPR models. The Leave-One-
Out procedure successively removes one molecule 
from the training set containing n molecules. A QSPR 
model is constructed on an "n-1" set of compounds and 
the molecule removed is predicted by the model. This 
procedure is repeated "n" times in order to predict the 
property of all molecules. 

The QSPR model expressed by the equations of 
MLR and MNLR methods is validated by its 
appreciable values of r2cv (Table 6) obtained using the 
Leave-One-Out (LOO) procedure. The value of r2cv 
greater than 0.5 is the basic condition for qualifying a 
QSPR model as valid. 
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Figure 6. The architecture of the RBF method used (four input variables, nine neurons in the hidden layer and 

one neuron to the output layer). 
 
 

 
 

  
 

Figure 7. Graphical representation of calculated and observed property and the residues values calculated by 
RBF method (training set in blue; test set in red). 

 

We use Cross-Validation as an internal test of 
the quality of MLR and MNLR models. The 
performance of models was good and was 
characterized by r2cv values; 0.846 for the MLR and 
0.860 for MNLR method (Table 6). 

y-Randomization test: To ensure the developed 
QSPR model is robust and not derive due to chance, 
the y-randomization test was performed on the training 
set data as recommended [20]. In this test, MLR and 
MNLR models are generated by randomly scrambling 

the dependent variable (property data) while keeping 
the independent variable (descriptors) unchanged. The 
resulting models are expected to have significantly low 
r2 and cross validated r2cv values for several trials, 
which confirm that the developed models are robust. 
We performed 100-y-randomization tests and observed 
that for all the models, the values of r2 and r2cv were 
<0.5 (Fig. 8). This test confirms that the developed 
models are robust and not derived merely due to 
chance.
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Table 5. Comparison of the observed values with those calculated by MLR, MNLR and ANN (MLP and RBF 
types) methods. 

N° Log(1/K) (obs.) Log(1/K) (calc.) N° Log(1/K) (obs.) Log(1/K) (calc.) 

MLR MNLR MLP RBF MLR MNLR MLP RBF 

1 3.153 2.939 3.012 2.996 3.202 27 2.338 2.367 2.333 2.290 2.264 

2 2.629 2.808 2.783 2.808 2.768 28 2.447 2.349 2.333 2.330 2.250 

3 2.330 2.653 2.571 2.571 2.532 29 2.361 2.356 2.332 2.328 2.250 

4 3.097 2.862 2.868 2.936 2.904 30a 2.338 2.312 2.265 2.242 2.254 

5 2.523 2.715 2.759 2.772 2.446 31 2.081 2.159 2.111 2.085 2.039 

6a 2.857 2.803 2.779 2.835 2.868 32 2.178 2.143 2.103 2.075 2.008 

7 2.721 2.619 2.543 2.570 2.447 33 1.968 2.032 2.019 2.003 1.985 

8 2.582 2.674 2.596 2.639 2.496 34 2.586 2.765 2.774 2.838 2.568 

9 2.086 2.463 2.337 2.325 2.354 35a 2.488 2.639 2.591 2.638 2.545 

10 3.480 3.180 3.329 3.133 3.267 36a 2.244 2.282 2.277 2.239 2.213 

11 3.283 3.081 3.162 3.055 3.266 37a 2.135 2.105 2.109 2.057 2.003 

12 3.090 3.096 3.195 3.114 3.164 38 2.078 2.123 2.081 2.053 1.965 

13 3.004 2.857 2.825 2.828 3.180 39 1.983 1.917 1.956 1.949 1.958 

14 2.690 2.849 2.907 2.787 2.690 40a 1.894 1.819 1.898 1.920 1.957 

15a 2.886 2.944 2.954 2.869 2.693 41 1.898 2.053 2.020 1.991 1.960 

16a 2.204 2.361 2.425 2.297 2.251 42a 2.019 2.050 2.069 2.032 1.967 

17 2.116 2.200 2.248 2.107 2.251 43 2.078 2.058 2.057 2.016 1.964 

18 2.030 2.059 2.117 2.004 2.252 44 1.868 1.757 1.874 1.912 1.957 

19a 2.099 2.210 2.200 2.161 2.250 45 1.863 1.621 1.847 1.893 1.957 

20 1.935 2.005 1.998 1.990 2.085 46a 2.348 2.390 2.280 2.265 2.446 

21 1.897 1.746 1.879 1.913 1.981 47 2.046 2.034 1.997 1.985 2.003 

22a 2.695 2.644 2.642 2.603 2.566 48 2.160 2.107 2.009 2.014 2.011 

23 2.477 2.516 2.465 2.398 2.582 49a 1.937 1.975 1.918 1.956 2.002 

24 2.699 2.616 2.576 2.623 2.549 50 1.960 1.913 1.849 1.934 2.001 

25 2.480 2.506 2.427 2.433 2.550 51 1.909 1.906 1.813 1.927 2.002 

26a 1.817 1.964 1.941 1.955 2.149       
aTest Set. 

 

Table 6. r2cv values obtained by the leave-one-out 
(LOO) method.  

MLR MNLR 
rcv 0.920 0.927 
r2cv 0.846 0.860 
MSE 0.032 0.029 

 

External Validation 

To estimate the predictive power of the MLR, 
MNLR and ANN (MLP and RBF types) models, we 
must use a set of compounds that have not been used 
in the training set to establish the QSPR model. The 
models established in the calculation procedure using 
the odorant molecules are used to predict the property 
of the remaining 14 molecules. The main performance 

parameters for the four models are shown in Table 7. 

The results obtained by MLR, MNLR and ANN 
(MLP and RBF types) models, are very sufficient to 
conclude the performance of models; it’s confirmed by 
the test done with the 14 compounds.  

A comparison of the quality of MLR, MNLR 
and ANN (MLP and RBF types) models shows that the 
four approaches have better predictive capability gives 
better results. MLR, MNLR and ANN were able to 
establish a satisfactory relationship between the 
molecular descriptors and the retention/release 
property of the studied compounds, it can be also seen 
that MLR method yielded the smallest RMSEP but the 
comparison of the prediction accuracy of four methods 
by randomization t-test show that  the difference 
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between MLR and the other methods (MNLR and 
ANN (MLP and RBF types)) is only indicative (p = 
0.01 for 199 randomization trials, so p˃(α=0.005)), in 

this case the four methods cannot account for a 
significant difference in prediction accuracy.

  
MLR Model MNLR Model 

Figure 8. y-Randomization plot of MLR and RNLM model. 
 

 Table 7. Comparison of MLR, MNLR and ANN (MLP and RBF types) models.   
ANN 

MLR MNLR MLP RBF 
Training Set r 0.942 0.957 0.955 0.954 

r2 0.886 0.917 0.912 0.910 
MSE 0.026 0.021 0.018 0.019 

Test Set r 0.973 0.966 0.972 0.924 
r2 0.946 0.933 0.945 0.854 

MSE 0.007 0.009 0.007 0.019  
RMSEP 0.083 0.092 0.084 0.137 

 

 Domain of applicability 

Evaluation of the applicability domain of the 
QSPR model is considered as an important step to 
establish that the model is reliable to make predictions 
within the chemical space for which it was developed 
[21]. There are several methods for defining the 
applicability domain of a QSPR model, but we used the 
most commonly used leverage approach in this study 
[22]. Leverage of a given chemical compound hi is 
defined as:  

hi = xiT(XT X)-1xi     (i = 1. . . .n) 

where xi is the descriptor row of the query compound 
and X is the descriptor matrix of the training set 
compounds used to develop the model. As a prediction 
tool, the warning leverage h* is defined as:  

h*= 3(p + 1)/n 

where n is the number of training compounds, and p is 
the number of descriptors in the model.  

The test compounds with leverages hi<h* are 

considered to be reliably predicted by the model. The 
Williams plot is used to interpret the applicability 
domain of the model. The domain of reliable prediction 
for external test set compounds is defined as 
compounds which have leverage values within the 
threshold (hi<h*) and standardized residuals no greater 
than 3 units (±δ). Test set compounds where (hi>h*) 
are considered to be unreliably predicted by the model 
due to substantial extrapolation. For the training set, 
the Williams plot is used to identify compounds with 
the greatest structural influence (hi>h*) in developing 
the model. 

From the Williams plot (Fig. 9), it is obvious 
that all compounds in the test set fall inside the domain 
of the MLR model (the warning leverage limit is 
0.405). For all the compounds in the training and test 
sets, their standardized residuals are smaller than three 
standard deviation units (3±δ). Therefore, the predicted 
retention/release property by the developed MLR 
model is reliable. 
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Figure 9. Williams plot to evaluate the applicability domain of MLR model. 

 

Proposed novel compounds 

QSPR correlates property data with the 
physicochemical properties of a group of compounds. 
It has been frequently used to predict proprieties of new 
compounds and to design compounds with desired 
properties. 

The developed equation (1) can be used for the 
designing of new odorant molecules derivatives with 
improved retention/release property (Log (1/k)).  

Comparing t-test and standardized coefficient 
values of descriptors (Table 8) indicates that the 
influences of the Henry’s law constant KH on Log (1/k) 
are stronger than those of the others. 

 

Table 8. t-test and standardized coefficient values of 
descriptors for equation (1). 

 Standardized  
coefficient t-test Sign. 

H° -0.053 -0.627 0.535 
KH 0.923 9.133 < 0.0001 
n -0.098 -1.290 0.206 
J -0.191 -2.732 0.010 

 

The equation (1) of the MLR method indicated 

the positive correlation of the Henry’s law constant 
KH. 

The obtained results show that, to increase 
retention property of odorant molecules, we will 
increase Henry’s law constant KH. Moreover, to 
increase release property, we will decrease Henry’s 
law constant KH of this molecule, by adding suitable 
substituents and calculated their property using the 
equation (1). 

The structures of the designed compounds and 
their parameter values calculated by the same methods 
as well as Log(1/k) values theoretically predicted by 
the MLR model (Equation (1)) are listed in Table 9.  

From the predicted properties, it has been 
observed that the designed compounds X1, X2, X3, and 
X5 have higher Log (1/k) values than the existing 
compounds. Also, the designed compounds Y1, Y2, Y3, 
Y4, Y5, Y6, Y7, Y8and Y9 have lower Log (1/k) values 
than the existing compounds in the case of the 51 
studied compounds (Table 1). 

The leverage values (h) calculated by equation 
(1) of the MLR for the new designed compounds are 
displayed in Table 9, only three compounds X2, X3 and 
Y6 are defined as outliers and consequently they are not 
being considered, because they have higher leverage 
which is greater than h* (h*=0.405) [23].
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Table 9. Values of descriptors, retention/ release property (Log(1/K)), and leverages (h) for the new designed 
compounds. 

Xi: 
O

R2R1

 

; Yi: 

R4R3

O

O

 
Designed compounds 𝐻𝐻∘ KH n J Log (1/K) Leverage (h) 

X1 R1=OH; R2=CH3 -359.69 4.8356 1.476 2.92 3.661 0.380 
X2 R1=CH3; R2=OH -359.69 7.01 1.476 2.92 4.939 0.677 
X3 R1=H; R2=OH -333.77 7.13 1.48 2.45 5.119 0.667 
X4 R1=H; R2=CH2OH -354.41 4.84 1.479 2.53 3.756 0.396 
X5 R1=CH2OH; R2=CH3 -380.33 4.71 1.476 3.18 3.523 0.387 
Y1 R3=C2H5; R4=CH3 -598.21 1.16 1.424 3.65 1.498 0.149 
Y2 R3=CH3; R4=C2H5 -598.21 1.16 1.424 3.61 1.509 0.143 
Y3 R3=C2H5; R4=C2H5 -618.85 1.04 1.427 3.75 1.396 0.183 
Y4 R3=CH3; R4=F -753.04 1.11 1.403 3.49 1.601 0.259 
Y5 R3=F; R4=CH3 -753.04 1.11 1.403 3.49 1.601 0.259 
Y6 R3=F; R4=F -928.51 0.93 1.384 3.49 1.583 0.476 
Y7 R3=CH3; R4=CH(CH3)2 -624.13 1.04 1.426 3.79 1.389 0.189 
Y8 R3=CH(CH3)2; R4=CH3 -624.13 1.04 1.426 3.86 1.371 0.203 
Y9 R3=CH (CH3)2; R4=CH(CH3)2 -670.69 0.79 1.431 4.08 1.159 0.280 

 

4. CONCLUSION 

Multiple linear and non-linear Regression and 
artificial neural networks (MLP and RBF types) were 
used to construct quantitative structure property 
relation models of odorant molecules for their 
retention/release property. The results show that the 
models proposed in this paper can predict 
retention/release property accurately and that the 
selected parameters are pertinent. The accuracy and 
predictability of the proposed models were illustrated 
by comparison of the key statistical terms r or r2 and 
the predictive powers of the equations were validated 
by an internal test (Cross validation and 100-y-
randomization) and external test set. 

All used models results have substantially good 
predictive capability, but MLR gives the most 
important interpretable results. The applicability 
domain of the MLR model was defined. 

We conclude that the most important finding 
about this research is that we have been able to design 
and proposed some new compounds with high or lower 
values property than the existing ones by adding 
suitable substituents and calculated their property 
using regression equation. Consequently, the proposed 
models will reduce the time and cost of synthesis and 

determination of the retention/release property for the 
odorant molecules. 
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