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Abstract: Physical-chemical analysis data were collected, from 998 ethanol samples of automotive ethanol 
commercialized in the northern, midwestern and eastern regions of the state of Paraná. The data presented 
self-organizing maps (SOM) neural networks, which classified them according to those regions. The self-
organizing maps best configuration had a 45 x 45 topology and 5000 training epochs, with a final learning 
rate of 6.7x10-4, a final neighborhood relationship of 3x10-2 and a mean quantization error of 2x10-2. This 
neural network provided a topological map depicting three separated groups, each one corresponding to 
samples of a same region of commercialization. Four maps of weights, one for each parameter, were 
presented. The network established the pH was the most important variable for classification and electrical 
conductivity the least one. The self-organizing maps application allowed the segmentation of alcohol 
samples, therefore identifying them according to the region of commercialization. 
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1. INTRODUCTION 

Fuels obtained from crude oil hydrocarbons, 
whose utilization is still prevalent, do not possess the 
advantage of ethanol which can be obtained from 
more evenly distributed resources worldwide [1]. 
Ethanol has increasingly attracted the attention of 
researchers, companies and governments, due to 
prospects of depletion of non-renewable fossil fuel 
sources, competition on fuel prices, as well as 
environmental concerns related to the emission of 
substances that harm the environment [2]. This 
biofuel is, to date, the only one able to meet the 
growing global demand for renewable energy of low 
cost and low polluting potential. Emissions from 
burning ethanol are smaller compared to emissions 
from burning gasoline and part of released CO2 is 
reabsorbed by the sugarcane itself [3, 4].  

Ethanol remains the most widely used biofuel 
in Brazil [5]. The country has large territory, climatic 
diversity and is currently positioned on the 
international scene as the largest producer and 
exporter of sugar cane and the largest producer and 
consumer of ethanol. It is also the only country to use 
ethanol on a large scale as an alternative fuel to 
petroleum derivatives. In the 70s, Brazil launched the 
National Alcohol Program - PROALCOOL and 
developed technology to use ethanol, extensively, on 
vehicles previously powered by gasoline. It is 
currently one of the most advanced countries, on the 
technological point of view, on the production and use 
of ethanol as fuel. The production process used in 
Brazil is almost exclusively the fermentation of the 
must, consisting of sugarcane juice and molasses [4, 
6]. 

 There are other raw materials used in the 
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world for obtaining ethanol. An alternative source of 
glucose used is sugar beet [7]. It is also possible to 
extract starch from vegetables, such from corn [8] and 
transform it into glucose for subsequent fermentation. 
In this case, enzymes make the starch liquefaction and 
saccharification to produce glucose, which is 
fermented by Saccharomyces cerevisiae to produce 
ethanol [9]. The second-generation ethanol is 
emerging from technology that converts cellulose into 
glucose, to later perform its fermentation to ethanol 
[10].  

Chemical characterization and quality control 
are also issues related to the use of ethanol. Brazil, as 
the pioneer in its operation, has relevant standards for 
the regulation of marketing and quality control. In the 
country, the National Agency of Petroleum, Natural 
Gas and Fuel (ANP) exercises this supervision, 
establishing quality control criteria for ethanol and 
other fuels in Brazil, through specific resolutions. The 
Resolution No. 19/2015 defines the fuel ethanol as a 
biofuel derived from the fermentation of renewable 
biomass, intended for use in internal combustion 
engines, which has as its main component ethanol, 
specified in the form of anhydrous ethanol fuel and 
hydrous ethanol fuel. The hydrous ethanol fuel is 
defined as ethanol fuel that is intended for direct use 
in internal combustion engines, unlike anhydrous 
ethanol which is used in blends with gasoline. The 
Resolution no. 19/2015 also specifies which 
laboratory test methods and chemical parameters will 
be considered for the quality control of ethanol. The 
standard methods indicated may come from the 
Brazilian Technical Standards Association (ABNT), 
identified with the NBR prefix as well as the 
American Society for Testing and Materials (ASTM), 
the European Committee for Standardization (ECS) 
and the International Organization for Standardization 
(ISO). The methods are generally the same, they are 
only translated and formatted differently according to 
the regulatory authority [11]. However, several of 
these analytical methods are developed based on other 
matrices, such as oil and water, and not specifically 
developed from tests with ethanol.  

Other methods of physical and chemical 
analysis for ethanol, although not covered by national 
and international bodies and legislation, have been 
presented and discussed in the literature, because 
knowledge of the different chemical species that may 
be present is relevant. Substances that produce toxic 
effects to the environment and life, such as heavy 
metals could also be measured and controlled. There 
have been studies with spectrometric techniques, 

chromatography and electrochemistry to detect 
various organic and inorganic compounds, among 
which stand out: lead, aluminum, cadmium, esters and 
aromatic aldehydes. The high reliability and detection 
of substances at low limits for these instrumental 
methods have enabled changes and additions of new 
official standards regarding the quality control of fuel 
ethanol [12]. 

When evaluating the results of chemical 
parameters of quality control, it is possible to infer 
about their previous storage conditions, contamination 
by water and acids and the presence of metal ions, 
particularly iron and copper [13, 14]. Brazil has more 
than 400 producers of sugarcane ethanol [15], and the 
ethanol features may differ according to its producers 
or distributors. The chemometric classification of 
samples is quite complex in most cases, especially if 
the patterns are described by a large number of 
independent variables; when this occurs, it is 
necessary to use automated systems. One of the 
systems are artificial neural networks, which try to 
model, even though primitively, the logical operations 
by which the brain performs various tasks [16, 17]. 

Over thousands of years, due to the evolution 
and adaptation of the human central nervous system, 
the pattern recognition and classification are naturally 
performed tasks [18,19]. Artificial neural networks 
have emerged as an alternative to this task, operating 
by computational methods. In silicon circuits the 
electrical impulses occur in the order of nanoseconds 
(10-9 s), while in the human brain they happen in the 
order of milliseconds (10-3 s). Artificial systems are 
typically configured to use fewer neurons, because the 
human brain compensates the lower rate of operation 
using a larger number of neurons linked with solid 
connections [19]. 

Artificial neural networks and brain neurons 
are similar due to acquiring knowledge through a 
process of learning and storing knowledge as synaptic 
weights, namely, the connection strength between 
neurons [19]. Each artificial neuron can receive 
multiple input stimuli and generates multiple output 
stimuli, and such flow is spread through network 
connections as in the biological model. The intensity 
of the propagation from a particular connection is 
made by bias weights. The received signals are 
summed and have their weight modified by a transfer 
function [20]. 

There are several types of neural networks 
such as multilayer perceptron, radial basis networks, 
self-organizing maps (SOM), among others [19, 21]. 
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For chemistry and agronomy, artificial neural 
networks have been used on cheminformatics 
research [22], on discrimination of coffee samples 
according to the region of growth [23, 24], on the 
study of the profile of adulterated gasoline and 
gasoline marketed in different regions [25, 26], on the 
segmentation of soybean samples by determining the 
content of inorganic compounds [27] and in the 
classification of ethanol samples by distillery of origin 
[28]. 

The self-organizing maps (SOM), specifically, 
can act in the field of humanities and applied social 
sciences to measure the welfare in a society [29]. 
Another study established similarity among countries 
grouping them according to social indicators [30]. In 
economics, the SOM can relate finances and society 
[31]. In behavioral studies, neural networks can learn 
and predict human actions in situations such as 
driving a car [32]. In medicine, they were used in the 
study of intestinal absorption of insulin [33] and in the 
representation of brain activity patterns [35]. In 
oceanographic they can check the phytoplankton 
biomass growth according to the sea characteristics 
[36]. In geology, they verified clay structures in rocks 
[37]. In astronomy, neural networks allow large data 
mining [38]. 

The self-organizing maps (MAO) or Kohonen 
neural networks use only the input variables to find 
similarities among samples. There is not 
backpropagation of output signals to detect errors and 
adjust weights, that means they are non-supervised 
networks, unlike the perceptron networks. Their 
learning is competitive since there is a competition 
among neurons for the output variables. They are able 
to build a map from a set of data from an input space, 
contained in a finite set of neurons arranged in one-
dimensional or two-dimensional arrangement, being 
suitable for the task of characteristics selection [20]. 
They work compressing variables in a two-
dimensional plane, resulting in a topological map 
where can be observed the presence of clusters of 
neurons that refer to the samples [29]. Clusters are 
identified visually wherein samples close to each 
other indicate a neighborhood relationship and their 
similarity of characteristics [20]. The self-organizing 
maps also allow the generation of maps of weights for 
each input variable, what allows a detailed 
understanding of how each factor studied interferes 
with the observed segmentation [39]. 

The prediction of commercialization regions of 
ethanol samples can be an object of experimentation 

of chemometric techniques [28, 40]. Therefore, 
artificial neural networks can examine ethanol 
database and indicate whether there is a pattern 
inherent to those samples. 

 

2. MATERIAL AND METHODS 

Samples 

The database was composed by 998 samples of 
hydrated ethanol fuel: 326 samples commercialized in 
the northern of Paraná State, analyzed at the 
Laboratory of Fuel Research and Analysis of the 
Universidade Estadual de Londrina; 420 from the 
eastern region, analyzed at the laboratory Chronion 
Análises Químicas Ltda.; and 252 samples marketed 
in the midwestern region of the state of Paraná, 
analyzed at the laboratory of fuels of the Universidade 
Estadual do Centro Oeste. The samples had been 
subjected to pH testing, alcohol content, electrical 
conductivity and density at 20 °C. The analysis results 
were presented to the self organizing maps neural 
networks. 

 

Alcohol content and specific mass 

To determine the alcohol content and the 
specific mass, the standard followed was the NBR 
5992 [41], equivalent to the ASTM D4052-11 [42]. 

 

pH 

The pH was determined according to the 
method NBR 10891, by measuring the difference of 
potential between electrodes [43]. 

 

Electrical conductivity 

It was determined according to the NBR 10547 
standard, equivalent to the D1125-11 [44]. 

 

Artificial neural networks 

The neural network module of MATLAB 
R2007 software was used and the entry of parameters 
was performed in the following order: specific mass 
at 20 °C, alcohol content, pH and electrical 
conductivity. 

 

Processing 
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All results of the experiments were processed 
on an Intel Core i7-4790 computer, with 3.60 GHz 
and 32 GB of RAM. 

 

3. RESULTS AND DISCUSSION 

In order to evaluate the profile of fuel ethanol 
commercialized in the northern, eastern and 
midwestern regions of Paraná state, data of 
physicochemical analysis of ethanol samples were 
collected. Figure 1 shows the data of 998 samples in 
chronological order by region, for the specific mass, 
pH, alcohol content and electrical conductivity. For 
pH, results for the midwestern region present more 
dispersed values, comparing with the values of the 
eastern and northern regions. The horizontal lines set 
the upper and lower compliance limits for the 
parameters utilized [45]. The compliance values for 
the specific mass are between 807.6 and 811.0 kg m-3, 
for the pH they are between 6.0 and 8.0, for the 
alcohol content between 92.5 and 93.8 % v/v and for 
conductivity at a maximum of 300 μS m-1. In the 
northern region, one sample is above the upper limit 
for the specific mass, two above the upper limit for 
the conductivity and two under the lower limit for the 
pH. For the alcohol content, one sample of the 
midwest showed results above the upper limit. For 
conductivity, two samples of each region exceeded 
the upper limit. 

 
Figure 1. Data for (a) specific mass, (b) pH, (c) 

alcohol content e (d) conductivity, for the ethanol 
samples.  

Table 1 specifies the minimum and maximum 
values for each parameter for the 998 samples, as well 
as the average and standard deviations, according to 
their region of commercialization. Standard 
deviations present higher values for conductivity, 
because their results tend to be more dispersed from 
the average value. 

The data of all samples were presented to the 
self-organizing maps (MAO) module available in the 
neural networks toolbox of the MATLAB R2007 for 
segmenting the ethanol samples according to their 
region. The MAO network transformed a standard 
incident signal of arbitrary dimension in a discrete 
two-dimensional map, showing this transformation in 
a topologically ordered way [20]. 

A network was trained with hexagonal 
topology 35x35, with 7000 training epochs, initial 
learning rate of 0.1 and initial neighborhood relation 
of 17. The network has stabilized the average 
quantization error in 0.05 with 5000 training epochs. 
The learning rate decreased to 9,1x10-5 and the final 
value of the neighborhood relation was 3.10-3. In this 
topology occurred 50 cases where more than one 
sample from different regions occupied the same 
neuron, by superposition, that means the mesh of 
neurons was not sufficient to enable the separation of 
groups. 

According to Boishebert et al. [46], the 
topology should be chosen to not contain few neurons 
in relation to the number of samples, so they do not 
overlap. However, it can not have a very large number 
of neurons that cause the samples to overly disperse 
forming more groups than desired. Moreover, a larger 
topology demand a higher computational processing. 

Therefore, a larger neural network with 
hexagonal topology 45x45 was trained with 5000 
training epochs with an initial learning rate of 0.1 and 
initial neighborhood relation of 22. The network 
stabilized the error with 4000 training epochs as 
shown in the chart on the Figure 2, the final 
quantization error was of 0.02, the learning rate 
decreased to 6.7x10-4 and the final value of the 
neighborhood relation was 0.03. 

 
Figure 2. Quantization error in relation to the number 

of epochs. 
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Table 1. Minimum values, maximum values, average and standard deviation (SD) of the samples by region of 
commercialization. 

All the regions Specific mass 
(kg m-3) 

pH Alcohol content ( 
g 100-1g) 

Electrical conductivity 
(µS m-1) 

Minimum value 807.7000 5.8000 92.5000 48.0000 
Maximum value 811.3000 8.0000 93.9000 351.0000 

Average 809.6880 7.1801 93.0672 128.7298 
SD 0.6194 0.5535 0.2291 36.7805 

     
Northern region Specific mass  

(kg m-3) 
pH Alcohol content  

(g 100-1g) 
Electrical conductivity  

(µS m-1) 
Minimum value 807.9000 5.8000 92.5000 62.8000 
Maximum value 811.3000 7.9400 93.7000 343.4000 

Average 809.3439 6.9867 93.1804 136.0692 
SD 0.4905 0.3128 0.1736 33.5836 

     
Eastern region Specific mass  

(kg m-3) 
pH Alcohol content  

(g 100-1g) 
Electrical conductivity 

 (µS m-1) 
Minimum value 808.5000 6.3200 92.5000 48.0000 
Maximum value 811.0000 8.0000 93.5000 351.0000 

Average 809.7257 7.6685 93.0745 118.5571 
SD 0.5029 0.2792 0.1886 32.7346 

     
Midwestern 

region 
Specific mass  

(kg m-3) 
pH Alcohol content  

(g 100-1g) 
Electrical conductivity  

(µS m-1) 
Minimum value 807.7000 6.0000 92.5000 60.7000 
Maximum value 811.0000 7.9000 93.9000 324.0000 

Average 810.0704 6.6164 92.9085 136.1897 
SD 0.6980 0.4395 0.2607 42.7240 

 

Figure 3 shows the distribution topology 
45x45, where it can be observed that the samples of 
the eastern region (L) are located at the top, the 
northern region (N) samples in the middle part and the 
midwestern region samples (C) at the bottom. 
Therefore, three groups can be visually identified with 
only 26 cases of samples from different regions 
overlapping on the same neuron indicating that the 
network showed a lower classification error in 
relation to the network with topology of 35x35. 

The topological map obtained showed the 
clustering of neurons referring to samples of the same 
regions. Its configuration originated from the 
interaction between four chemical parameters 
analyzed in the ethanol samples. Over the topological 
map there can be superimposed weight ranges for 
each variable. Thus, for each parameter a map of 
weights can be generated, which adopts the sample 
distribution map to overlap value ranges to the 
neurons. The samples become part of a range of 
weights and samples belonging to the same group 
have similar weights, this indicates similarities among 
the samples for that variable. The weight ranges are 

designated by different shades. If ethanol samples 
from the same region are present at or near same 
weight ranges, this means that parameter was the most 
significant to set apart those samples from the others. 

 
Figure 3. Training graph for the 45 x 45 topology 

showing the distributions of samples according to the 
winner neuron. 

The map of weights for the specific mass 
(Figure 4) indicates that the samples of the midwest 
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(C) predominate in the red and orange area, with 
higher weights, distinguishing it from the other two 
regions. However, it was not possible to distinguish 
the eastern (L) and northern (N) regions, since they 
show results in similar weight ranges, which are the 
blue and green areas of the map. Therefore, the 
specific mass was an important parameter only to 
differ samples of the midwest from the others. 

 
Figure 4. Map of weights for the specific mass. 

 

Figure 5 shows the map of weights for the 
alcohol content. This variable was also important to 
separate the samples from the midwest (C), because 
although there are samples from the eastern (L) group 
placed at the lower weights, most of the group C is 
located in these regions, that is, in the blue areas. 
However, the samples of the northern (N) and eastern 
(L) regions are distributed heterogenically on the 
map, in all weight ranges. 

 
Figure 5. Map of weights for the alcohol content. 

 

The electrical conductivity is represented at the 

weight map shown in the Figure 6, which grouped 
samples from the midwest (C) and northern (N) in an 
area with higher weights indicating similarity between 
these regions. In the blue areas of the map, 
corresponding to lower weights, there are 
concentrations of samples from the eastern (L). 

 
Figure 6. Map of weights for the electrical 

conductivity. 
 

The Figure 7 presents the map of weights for 
the pH parameter. The group L is situated in the red 
area of the map, corresponding to higher weights. The 
group C is situated in the darker blue of the map, with 
lower weights. The N group is located in a region of 
intermediate weights. In the areas around the neutral 
pH 7.0, samples from northern (N) region 
predominate. Besides indicating the formation of 
three groups, this parameter was also important to 
justify the distancing of L and C groups, as they are 
found in very different weights ranges. So, pH 
parameter proved to be important for the classification 
of samples according to their region. 

 

 
Figure 7. Map of weights for pH. 
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4. CONCLUSION 

It was possible to separate samples of hydrated 
ethanol marketed in the northern, midwestern and 
eastern regions of Paraná, making use of neural 
networks. The most relevant factor for separation was 
the pH followed by the specific mass, then the alcohol 
content. The choice of the topology 45x45 enabled the 
best separation of the samples and 4000 epochs of 
training demonstrated to be sufficient. 

The self-organizing maps emerge as a tool able 
to do the segmentation of ethanol samples and verify 
which chemical parameters are the most relevant for 
this comparison and which are less important. The 
success in the segmentation of samples through this 
technique brings the possibility of its use to separate 
ethanol samples according to   other factors, aside 
their region of commercialization, such as those 
relating to  their production  process or their 
feedstock. 
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