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Phytopathogenic fungi like Fusarium graminearum are the cause of the disease gibberellosis, also known as 

Fusarium head blight (FHB). This disease shows significant losses in agriculture and effects on global economy. 

Nevertheless, this condition can be reduced with the use of commercial fungicides. Thus, this work describes 

computational studies performed on a group of natural products triazole derivatives using as starting point a small 

library of quinazolines synthesized by the literature. These quinazolines were applied to build QSAR models. 

Furthermore, using the Swiss Model server, a comparative modelling of the β-tubulin protein was realized to test 

the models and the compound 15, a triazole derivative of thymol successfully was further through both the QEPest 

and ProTox II toxicity tests. The behavior and stability between compound 15 and β-tubulin were then evaluated 

by 200 ns of molecular dynamics in comparison to carbendazim as standard inhibitor. Finally, the compound 15 

revealed a stable complex with the protein throughout the simulation, exhibiting low fluctuations in the RMSF, 

indicating good interactions with the residues present. The investigation of the free energy of binding supports 

this, showing that whereas carbendazim had an MM/GBSA of -18 kcal/mol, thymol-derived 15 had an MM/GBSA 

of -44 kcal/mol. 
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1. Introduction   

Currently, one of the most significant crops in agriculture 
is the wheat (Triticum spp.), that provides food and nutrition 
for both humans and animals [1].  Fusarium graminearum is 
the causative agent of gibberellosis and is also known as 
Fusarium head blight (FHB). This fungus affects mainly 
cereals such as wheat, corn, oats, and barley. Losses are 
demonstrated by lower grain quality and crop production, as 
well as the presence of mycotoxins in the grain [2], that causes 
billion of dollars in losses annually [3] and are harmful to 
animal and human health [4].  

The disease can be observed at the spike stage of the 
plant and particularly during the flowering stage, which can 
last until the grain starts to ripen. A pink clump of spores that 
forms on the spikelet and is readily seen in the field is 
indicative of symptoms [5].  Alternatively, as a result of the 
pathogen's internal growth and subsequent propagation 
inside the spike, the spikelets may blanch prematurely. 
Furthermore, the grains become wrinkly, shriveled, and 
variably colored when the fungus settles on them, impairing 
their ability to mature [6]. Since the early 1970s, Fusarium has 
been extensively controlled with benzimidazole fungicides [7]. 
The most often utilized member of the benzimidazole 
chemical group is methyl-2-benzimidazole carbamate, also 
known as carbendazim. 

Natural fungicidal products are emphasized, with a focus 
on the idea of "sustainable agriculture" and their role in 
lowering fungal infections in the agricultural ecosystem. They 
serve as effective tools for combating various issues related 
to infections, pathogenesis, and disease protection [8]. 
Besides, there is a growing trend in incorporating natural 
products into inhibitor discovery programs [9]. Althought, 
natural products can target tubulin as inhibitor or promoter the 
microtubule’s polymerization [10]. Additionally, they have the 
ability to interfere with the synthesis of tubulin, which can stop 
mitosis, induce apoptosis, and prevent microtubule assembly 
[11]. 

Synthetic fungicides target the β-tubulin protein by 
preventing the construction of α and β heterodimers, which 
are essential for biological functions such as cell motility, 
division, and signaling [12]. The fungus dies as a result of the 
inhibition of microtubule production, which creates 
multinucleated cells that are unable to divide. Carbendazim 
has been used so frequently that it is now a recurring 
contaminant in both soil and water. According to previous 
studies, the imidazole ring significantly combines fungicide 
residues and metabolites into the organic matter of the soil, 
allowing the fungicide to persist in the environment [13].  

New techniques were developed to produce substances 
that are less damage to the environment in an effort to 
mitigate these effects. To aid in the development of novel 
agrochemical candidates with strong antifungal potential, 
computational techniques such as Quantitative Structure-
Activity Relationship (QSAR) analysis are used to provide 
crucial information on the relationship between chemical 
structure and biological activity from a substance. This 
method greatly lowers operational expenses by simplifying 
the process of finding new bioactive chemical [14]. 

Consequently, minor modifications to the molecule's structure 
can instantly affect its bioactivity, which makes this technique 
essential for optimizing chemical items that have not been 
tested before [15]. So, we used a group of 27 quinazoline 
derivatives described and analysed their biological activity 
against F. graminearum by Wang and coworkers [16] to 
constructed the models of QSAR-2D and 3-D.  

Molecular dynamic simulation and docking molecular are 
two more essential in silico ways to analyze the behavior of a 
protein and its ligand. Although each has its unique 
characteristics, both are typically utilized to comprehend the 
complex, its interactions, and their binding affinity. After the 
methods for treating FHB illness were identified, we 
suggested screening natural product-derived triazoles found 
in the literature [17-19] to determine their potential as β-tubulin 
inhibitors against Fusarium graminearum. 

2. Results and Discussion  

QSAR-2D MODELS 

The computation of molecular descriptors is required 
when building models. Therefore, the PaDEL program was 
used to describe the compounds and provide a numerical 
representation of their properties. Descriptors with high 
correlation were eliminated. The 19 compounds that were 
separated to create the QSAR models during the process of 
division training (70%) and testing (30%) using the k-medoid 
GUI v1.1 software were the compounds that were used to 
develop the models. As stated in the approach above, eight 
compounds that were separated during the test were used for 
validation. 

Using Best Subset Selection software, descriptors whose 
model yielded a q² above 0.6 and had the strongest 
association with biological activity were found. After that, the 
data were further processed with the Jamovi program (2022), 
allowing for the creation of a statistically meaningful model. 
The topological descriptors JGI1 and VE3_D in Table 1 
represent the best model; the remaining descriptors are 
included in annex I in the supplementary material. 

For external validation, the antifungal activity of the test 
set was predicted using equation 1. The difference between 
the experimental and predicted pEC50s was used to compute 
the residuals. Since Model 4 had the highest r2

test = 0.764 
produced the best predicted correlation coefficient, it was the 
best. See the additional material, annex I for viewing the other 
models. Notably, the model's predictive capacity increases as 
the predicted correlation coefficient (r²test) becoming closer to 
1. This approach is relevant to the external validation of the 
models using the test set. In statistical modeling, a model is 
desired to be able to explain a significant portion of the 
variability in the test data, as shown by an R² close to 1.  

The generated model can be visualized by the following 
linear combination: 

pEC50= 5.43+23.87 *JGI1+1.33 *VE3_D                 (Eq. 1) 

 

Table 1. Statistical outcomes of the best model found using QSAR-2D as determined by Jamovi software. 

QSAR-2D 

Model Descriptors present R² R² adjusted 
Durbin-
Watson 

VIF Shapiro‒Wilk q² r² test 

4 JGI1 - VE3_D 0.797 0.771 1.46 1 0.491 0.743 0.764 
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CoMFA MODEL 

Table 2 displays the best model validation findings for 
each type of partial atomic charge, where the models were 
fitted at several theoretical levels: ab initio (HF 3-21G and HF 
6-311G), semiempirical (PM7, RM1, AM1-BCC), empirical 
(Gasteiger, Gasteiger-Hückel, and MMFF94), and DFT 
(B3LYP/6-311G). The annex II of supplementary material 
contains the outcomes of every focus model. 

The loads determined by the AM1-BCC method produced 
better results, with lower prediction error (SEP = 0.134) in the 
leave-one-out method and subsequently greater q² (0.980) 
among the findings produced by the internal validation of the 
training set of molecules (19). However, cross-validation (q²) 
alone is not enough to validate the model because, according 
to Leemans et al. [48], for the prediction to be reliable, it needs 
to be validated using the molecules in the test set. The 
external validation performed by the test set will inform the 
predicted r², which must be above 0.5 [49]. 

Consequently, all of the models underwent external 
validation, producing an r2

test for each of the eight test 
molecules loaded with various partial atomic charge types to 
determine the predicted biological activity. Among the models 
presented, the one with the best predictive capacity was the 
restricted electrostatic potential (RESP) charge model using 
the HF 6-311G method, which obtained the highest predicted 

correlation coefficient (r²test = 0.834). 

Madhavan et al. [28] reported that, compared with 
empirical or semiempirical models, QSAR models with more 
complex partial atomic charge calculations, such as HF and 
DFT calculations, exhibited a stronger correlation with 
biological activity. This partially corroborates the findings of 
this work since the semiempirical PM7 method outperformed 
the DFT method in terms of outcomes. Therefore, as CoMFA 
is a comparative molecular field analysis technique that 
focuses on steric and electrostatic fields, the PM7-derived 
charges more adequately captured the effects relevant to this 
analysis. 

 

CoMSIA MODEL 

Three additional descriptors, hydrophobic, donor, and 
hydrogen bond acceptor, that are absent from CoMFA are 
used in the CoMSIA method [15]. The descriptors that most 
significantly influenced the type of partial atomic charge that 
was estimated are included in Table 3. It is evident that the 
most prominent characteristics for this training set are 
hydrophobic and electrostatic. The model was not improved 
by adding additional parameters. The annex III of 
supplementary material contains the outcomes of every focus 
model. 

 

Table 2. The statistical characteristics that correspond to the QSAR-3D CoMFA models that were developed based on partial atomic 
charge calculations. Model regression coefficient (W) and focus (D). 

Statistical parameters PLS - CoMFA 

Charge Methods q² SEP r² SEE N r² test S E Focus 

PM7 0.946 0.217 0.997 0.05 6 0.664 0.412 0.588 W0.7D1.0 

RM1 0.941 0.227 0.997 0.054 6 0.008 0.466 0.534 W0.7D1.0 

Gasteiger-Marsili 0.909 0.251 0.956 0.176 3 0.181 0.534 0.466 W0.7D1.0 

Gasteiger-Hückel 0.894 0.272 0.961 0.165 3 0.296 0.540 0.460 W0.7D1.0 

MMFF94 0.902 0.280 0.994 0.068 5 0.413 0.406 0.594 W0.7D1.0 

AM1-BCC 0.980 0.134 0.997 0.048 6 0.476 0.384 0.616 W0.7D1.0 

HF 3-21G 0.841 0.332 0.950 0.187 3 0.316 0.505 0.495 W0.7D1.0 

HF 6-311G 0.826 0.348 0.959 0.169 3 0.809 0.479 0.521 W0.7D1.0 

DFT 6-311G 0.569 0.531 0.855 0.307 2 0.659 0.439 0.561 W0.3D1.0 

RESP HF 6-311G 0.834 0.340 0.958 0.171 3 0.834 0.481 0.519 W0.7D1.0 

For internal validation, the following equation was used: q2 LOO - cross-validation coefficient calculated using the "leave one-out" method; 
SEP - standard error of prediction; N: number of components; r2 - correlation coefficient; and SEE - standard error of estimate. For external 
validation, the r²test was used to predict the correlation coefficient. Fractions: S: Steric; E: Electrostatic. 

 

Table 3. The statistical characteristics that correspond to the QSAR-3D CoMSIA models that were developed based on partial atomic 
charge calculations. Model regression coefficient (W) and focus (D). 

Statistical parameters PLS - CoMSIA 

Charge Methods Focus q² SEP r² SEE N r² test A E S H D 

PM7 W0.7D1.5 0.941 0.21 0.986 0.103 4 0.542  0.461 - 0.403 0.135 

RM1 W0.7D1.0 0.974 0.14 0.985 0.105 4 0.784  0.564 - 0.436 - 

AM1-BCC W0.7D1.0 0.95 0.209 0.991 0.088 6 0.644 0.059 0.533 - 0.355 0.053 

Gasteiger-Marsili W0.9D1.5 0.956 0.195 0.987 0.106 6 0.858 - 0.415 - 0.585 - 

Gasteiger-Hückel W0.9D1.5 0.931 0.219 0.973 0.137 3 0.816 - 0.381 - 0.619 - 
MMFF94 W0.9D1.5 0.94 0.205 0.974 0.134 3 0.728 0.072 0.446 - 0.482 - 
HF 3-21G W0.9D1.5 0.865 0.343 0.972 0.157 6 0.791 - 0.648 - 0.352 - 
HF 6-311G W0.9D1.5 0.749 0.418 0.927 0.226 3 0.803 - 0.636 - 0.364 - 
DFT 6-311G W0.9D1.0 0.915 0.272 0.910 0.242 2 0.601 - 0.561 - 0.439 - 
RESP HF 6-311G W0.9D1.0 0.780 0.392 0.924 0.229 3 0.857 - 0.511 - 0.489 - 

For internal validation, the following equation was used: q2 LOO - cross-validation coefficient calculated using the "leave one-out" method; 
SEP - standard error of prediction; N: number of components; r2 - correlation coefficient; and SEE - standard error of estimate. For external 
validation, the r²test was used to predict the correlation coefficient. Fractions: S: Steric; E: Electrostatic. 

 

Compared to all other methods, the CoMSIA model's 
predictive ability utilizing the Gasteiger–Marsili method (r²test 
= 0.858) was the most accurate; the CoMSIA model was 
constructed with only electrostatic (E) and hydrophobic (H) 

descriptors. Despite the similarity to the model calculated with 
the RESP HF 6-311G charges, whose predicted r²test was 0.857 
in the external validation, it did not have a higher q² LOO than 
the Gasteiger–Marsili model. 

file:///C:/Users/Fabio/Desktop/Template%20-%20Orbital/Final/www.orbital.ufms.br


 Orbital: Electron. J. Chem. 2025, 17(4), 322-338 

 

 

 

Published by Federal University of Mato Grosso do Sul | www.orbital.ufms.br                                                                       325 

The CoMFA and CoMSIA models both satisfy the 
requirements that a q² LOO > 0.5 and a r² ≥ 0.5 be established 
to achieve accuracy in estimating biological activity. Thus, 
according to Kumar and coworkers [50], who determined that 
descriptors are critical for linking observed activity, all the PLS 
models that were generated were statistically significant. 
Moreover, the outcomes of the external validation indicated 
that the created model has outstanding accuracy. 

A scatter plot was created with all of the training (orange) 
and test (blue) compounds for improved visibility, as shown in 
Graph 1. 

The results below yield the r²test, which was 0.764 for 

QSAR-2D, 0.834 for CoMFA, and 0.858 for CoMSIA. The 
results of the external validation suggest that the models 
generated had excellent accuracy. 

The kind of partial atomic charge that is employed directly 
affects the precision of QSAR models. As noted by Kumar et 
al. [50] the estimation of these charges yields a higher cross-
validation coefficient (q²LOO) and computes the molecular 
interaction fields (MIFs), which in turn explains the variance of 
chemical structures with respect to their biological activity. In 
addition to q², the correlation coefficient (r2) is an important 
parameter for assessing the quality of PLS analysis, where it 
indicates predictive ability and self-consistency [51]. 

 

Graphic 1. Correlations of the experimental and predicted pEC50 values for the training (orange) and test (blue) sets. 

  

 

 

Contour maps 

Contour maps serve as useful tools for identifying regions 
where chemical changes may impact biological activity. It has 
the ability to highlight the areas in which any modifications in 
the elements will have an influence on the steric, electrostatic, 
and hydrophobic characteristics as well as the ability to 
donate and accept hydrogen bonds, which may result in 
alteration of the biological property in question [51].  

The polyhedra on the maps are colored; those in yellow 
and green indicate the locations that are favorable or 
unfavorable for bulky groups (steric factors), respectively. The 
regions represented by red and blue polyhedra indicate the 
regions in which the electronegative groups are unfavorable 
or favorable for fungicidal activity, respectively. These regions 
should be emphasized because they can be utilized to change 
structures and create novel compounds [15]. The contour 
maps were created using the training set's highest active 
chemical (25). 

The contour map with steric effects from the comparative 
molecular field analysis (CoMFA) is shown in Figure 1. The 
presence of bulky aromatic groups is likely the reason why the 
yellow regions are considered unfavorable regions. This is 

evident from the fact that the pEC50 value of compounds 
containing bulky groups in this area was lower. A large yellow 
contour placed on the benzene ring indicates that larger 
substituents are not preferred in this region, as Krishna et al. 
[51] noted in their steric effect map. According to Walter, 
Almeida, and Nunes [52], a yellow surface indicates that 
smaller ligands promote steric interactions, increasing the 
biological activity of the examined molecule. Therefore, the 
most active compound (25) in this study has only one chlorine 
atom in the yellow region. 

The contour map incorporating the electrostatic effect 
shows that the addition of electronegative elements is likely 
beneficial and can increase the predicted activity, as indicated 
by the blue polyhedra (SYBYL-X, 2013). When added at the 
end, substituents that increase the negative electrostatic 
potential should boost activity, which is regulated by the blue 
region of the molecule [52]. Consequently, as illustrated in 
Figure 1, the most active chemical (25) in this map has highly 
electronegative nitrogen and oxygen atoms within its 
structure, yet these are encircled by the blue zone. Conversely, 
red polyhedra represent areas where positive charges are 
advantageous; in these locations, negatively charged atoms 
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render the molecule unsuitable for biological activity. In 
contrast, the lone fluorine atom in the set of training 
molecules is located in the red polyhedron, an area that is 
unfriendly to electronegative groups. Despite this, the 
compound remained the most active of all the others.  

 

 

Fig. 1. CoMFA contour map of the most active compound (25), 
with the RESP charge HF6-311G at a focus W0.7D1.0. 

Sterically disadvantaged areas are shown in yellow polyhedra. 
Electrostatically favored areas are shown in blue polyhedra. 

Source: Images taken from Sybyl-X. 

 

Figure 2 displays the CoMSIA contour map, which was 
created using the Gasteiger–Marsili model; the descriptors 
used were hydrophobic (58.5%) and electrostatic (41.5%). El-
Mernissi et al. [53] also noted these two interactions and 
concluded that they were important for enhancing inhibitory 
activity. Based on these two descriptors, they created four 
novel tubulin protein inhibitors. 

The presence of hydrophilic groups in the magenta region 
tends to increase biological activity, since this region are 
unfavorable for the hydrophobic action of the most active 
molecule (25). This area of the molecule is unfavorable for the 
inclusion of benzene rings or apolar groups, and the addition 
of more apolar groups often reduces biological activity. In 
support of this idea, substitutions of hydrophilic groups such 
as hydroxyl groups increase biological activity, according to 
Nilewar and Kathiravan [54]. Since the hydrophobic area is 
unfavorable, Ashraf and colleagues [55] also verified that 
activity increases when this region is replaced by hydrophilic 
molecules. 

The region shown in blue is advantageous for the 
substituent there, which in this case is fluorine, with reference 
to the electrostatic action on CoMSIA. This area favors the 
presence of electronegative atoms, which increases the 
biological activity of this element. 

The least active molecule (8 with pEC50 = 3.0488) only has 
substituents on R2 (2 Cl), whereas the most active molecule 
(25 with pEC50 = 5.4505) has substituents on R1 (Cl) and R2 (F). 
Compound 25 has a chlorine at the -to position (R1), but 
compound 8 does not have any substituents on the 
quinazoline ring. This difference in ring structure can be used 
to explain why compound 25 has a greater electrostatic 
potential than compound 8. The compound's activity is 
increased by substitution by electron-donating groups, as 
shown by the blue contour in the R2 area. Ashraf and 
coworkers [55] support this observation. 

Therefore, fluorine is more effective than two chlorine 
atoms, which is what happens with the compound with the 

lowest biological activity. Since fluorine is more 
electronegative than chlorine, this explains the difference in 
antifungal activity between these two compounds. 

 

 

Fig. 2. CoMSIA contour map of the most active compound 
(25), with Gasteiger-Marsili charge at focus W0.9D1.5. The 

electrostatically favored area is shown in the blue polyhedron. 
The nonfavored hydrophobic areas are shown in magenta 

polyhedral. 

 

TRIAZOLE-DERIVATIVE NATURAL PRODUCTS SCREENING 

Triazole derivatives are widely utilized globally and are 
strategically evaluated due to their ability to reach a broad 
range of species, for example, through foliar spraying on 
growing crops such as cereals and horticulture or through 
seed treatment [56]. Since the 1970s, triazole fungicides have 
been widely employed in agriculture to protect plants due to 
their high chemical stability and low biodegradability [57]. The 
biological activity predictions for every molecule in our library 
group are shown in Table S25 on Annex VI of the 
supplemental material, which is the result of the QSAR-2D and 
-3D models' development and analysis. Nevertheless, 
following model testing, Figure 3 displays the top candidates 
with the highest biological activity. 

Therefore, in terms of QSAR-2D, the best compounds are 
21 and 25, from isatin, towards of to the 32 molecules from 
the compound library employed in this in silico experiment. 
CoMFA evaluates thymol (15) and isatin derivatives (20), and 
only isatin derivatives (22, 27) are evaluated by CoMSIA. 

 

BEST CANDIDATE COMPOUNDS 

Contour maps are useful for the creation of new drugs 
because they make it possible to determine whether a 
substitute will be advantageous for increasing biological 
activity. The library of compounds (triazole derivatives) was 
superimposed using the CoMFA and CoMSIA contour maps 
of the most active compound (25), as previously mentioned 
(see Figure 4). 

It is evident that various colors were used to highlight the 
molecules in the compound library to distinguish the most 
active molecule (25), which is shown in light blue. The six best 
triazoles have tiny groups at the right end, as shown by 
examining the steric fields. The positions in which the 
triazoles were oriented in the correct directions according to 
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the contour maps were chosen for docking-based alignment 
at the crystallographic ligand site. As previously stated, yellow 
polyhedra represent areas where only little ligands enhance 
biological activity. Therefore, of the hundred conformations 

that each triazole obtained during molecular docking, only 
those containing smaller branches facing the ring of the 
crystallographic ligand itself were selected. 

 

15  
20  21  

22   25   
27   

Fig. 3. Structures of the compounds with the best biological activity predicted by the 2D and 3D QSAR models (CoMFA and CoMSIA). 

 

It is well known that apolar regions negatively impact 
biological activity in the hydrophobic zones found in the 
CoMSIA contour map. Consequently, the presence of 
hydrophilic components in the magenta zone enhances their 
interaction. Regarding this, hydrophilic substituents are 
present on the right side of triazoles compounds, in the same 
area where a magenta polyhedron can be found in the CoMSIA 
contour map. Furthermore, the triazoles 22 and 27 contributed 
more to the higher antifungal activity than the more active 
molecule (25) derived from quinazoline, which was utilized to 
build the QSAR models. 

Concerning the electrostatic field, it is well known that 
biological activity tends to increase in the blue zone where 
there are more electronegative atoms. Nitrogen and oxygen 
were thus found in the contour map region, which was 
advantageous for accessing these substituents on the 

triazoles, which were determined to be the best candidates. 
Compared to compound 25, which has the highest pEC50 
among the others, the compound generated from isatin 22 
was more active in the model. It is evident that the 
components, which are parallel to one another in both 
compounds and have identical chain sizes, are similarly 
positioned and aligned. 

The most active compound (25) had an actual 
experimental biological activity of 5.450 mol.L-1 for the fungus 
F. graminearum, whereas its predicted activity (pEC50), as 
determined by CoMSIA in the best model constructed, was 
5.363 mol.L-1. The more active compound was outperformed 
in this regard by isatin-derived compounds 22 and 27, with 22 
having a pEC50 = 5.539 mol.L-1 and 27 having a pEC50 = 5.509 
mol.L-1. 

 

 

 
 

 

 

 

 

Fig. 4. Overlay of the triazole compounds with the most active compound (25) (light blue color) from the training set of QSAR models. 

 

As can be observed, the compound library was able to 
predict a higher antifungal activity than the quinazoline-
derived compound 25 in the model, although it was still unable 
to outperform the commercial fungicide carbendazim's 
experimentally estimated activity (5.638 mol.L-1). 

 

COMPARATIVE MODELING 

Since strong ligand-target receptor binding is necessary 
for activity, studying the molecular structure of the β-tubulin 
protein is crucial for comprehending the mechanism of action 
of carbendazim [58]. 
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The NCBI database was utilized to obtain the main 
sequence of the β-tubulin protein from the fungus Fusarium 
graminearum, which the fasta code for this sequence was 
Q4HZS8.1. Comparative modeling was performed using the 
crystallographic structure of β-tubulin from the microtubule 
complex of Homo sapiens (PDB: 7ZCW), which was also used 
by Ramirez-Rios and associates [59], utilizing the Swiss Model 
server (swissmodel.expasy.org/workspace/) [60]. 

A validation of the suggested model revealed GMQE 
(Global Model Quality Estimate) values of 0.87 and QSQE 
(Quaternary Structure Quality Estimate) values of 0.40; the 
optimal values are above 0.7 [61]. The selected template was 
7ZCW.1. G, which had 82.70% sequence identity. During the 
modeling process, these values offer quality estimates. At the 
tertiary and quaternary structure levels, GMQE and QSQE 
provide the expected estimates of the final model, enabling 
the identification of the best models [60]. 

A Qualitative Model Energy Analysis (QMEAN) of 0.84 ± 0.5 
was the result of the Swiss Model's validation of the model. 
The primary geometric features of the protein structures were 
described by the scoring function (QMEAN), which indicates 
that models with a quality score of 0.5 are of good quality [62]. 

Bindewald and Skolnick [63] revealed that a protein 
extracted from the PDB should have a resolution of less than 
3 Å to enhance the focus on that interaction space and 
support accurate atom visualization. Following comparative 
modeling, the 7ZCW protein was suggested as a model, and it 
has a resolution of 3.60 Å. However, the validation of the 
comparative modeling carried out by the PROCHECK and 
VERIFY3D platforms (https://saves.mbi.ucla.edu/) showed a 
quality and efficient model, where VERIFY3D observed 84.98% 
of the residues with an average equal to or greater than 0.1. 
The Ramachandran graph analysis results demonstrate that 
the model's quality is good, with 91.4% of the torsional angles 
falling inside the advantageous zone. An effective model of 
acceptable quality must contain values above 90% of the 
residues in favorable regions. This conformation provides 
crucial information for selecting an effective model that does 
not contain steric hindrance in the side chains of amino acids 
[64]. In this regard, we concluded that the predicted protein 
was validated with PROCHECK. 

Since the modeled protein had no ligand, the template PDB 
(7ZCW) was used, and all the chains (A, B, C, D, E, F, G, H) were 
downloaded. According to the PDBSum platform 
(http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/), 
chains A and E are identical, as are B= F= G= H and C and D. 
To reverse the situation of the template protein (7ZCW.1. G) 
without a ligand, the original ligands were inserted manually. 
This procedure was checked in PyMOL, where an alignment 
between the two proteins verified their overlap (RMSD = 0.208 
Å) and confirmed that the crystallographic ligand was in the 
same location as the 7ZCW protein. Figure 5 shows the 
PyMOL alignment of the template and the modeled protein. 

Leucine (L) is located at position 240 of β1-tubulins in the 
majority of phytopathogenic fungi, and this was confirmed in 
this work using comparative modeling. Nevertheless, studies 
have shown that some wild fungi in this same location also 
contain phenylalanine (F) and that resistance to 
benzimidazole fungicides is caused by this modification [65]. 
These data suggest that the protein that was constructed may 
actually be fungicide sensitive rather than resistant. 

 

DOCKING MOLECULAR 

Redocking the ligand 

The coordinates of the crystallographic ligand of the PDB: 
7ZCW protein were found using the redocking methodology in 
the four scoring functions of Gold 2022.3.0 software 
(https://www.ccdc.cam.ac.uk/solutions/software/gold/) - 
GoldScore, ASP, ChemPLP and ChemScore. There are two 
crystallographic ligands in this protein. The binding site 
between the α and β chains of the tubulin protein is the 
guanosine triphosphate (GTP) ligand, which interacts more 
with the α chain and only one amino acid (Lys252) from the β 
chain. Furthermore, only the β chain is connected to the 
second ligand, G2P (guanylate ester of 
phosphomethylphosphonic acid). Redocking was performed 
on top of the G2P ligand since the protein that was modeled 
following alignment with the model protein was more similar 
to it, as illustrates in Annex VIII on supporting information. The 
overlap of both ligands is also there. 

When the RMSD (Root Means Square Deviation) is less 
than 2 Å, the approach is deemed acceptable and efficient 
since it establishes the best fitting position between the ligand 
and the protein [66]. In simple terms, it evaluates how well and 
accurately the predicted ligand positions match the real (or 
crystallographic) positions of the ligands when they bind to 
the target protein. 

 

 

 

Fig. 5. Protein model (in pink, 7ZCW.1. G) by Swiss Model 
using the protein template (green: PDB: 7ZCW). Alignment with 

an RMSD of 0.208 Å. 

 

Molecular Dynamics Simulation and frame extraction 

After the molecular dynamics was completed, the complex 
under study had a collection of different conformations known 
as frames, totaling 5000 frames throughout the course of the 
100 ns journey. For comparative purposes, the ligand and 
protein's RMSD over time were initially determined before 
delving into the analysis of the individual frames obtained 
from the molecular dynamics trajectory. The 50 best frames 
were chosen after a cutoff was reached, with the lowest RMSD 
values serving as the selection criterion. The supplemental 
material contains the commands that are utilized. 

 

Ensemble docking 

By examining several protein conformations (extracted 
from frames generated by molecular dynamics), it was 
possible to find a range of potential interactions between the 
protein and the ligand. This approach allowed for a more 
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extensive investigation made feasible by the application of 
ensemble docking. 

The fifty frames with the lowest root mean square 
deviation (RMSD) values were selected for redocking using 
the Gold 2022.3.0 program via the same previously 
standardized ASP 7 Å score function. The selected cluster in 
the '.pdb' file was then separated from its ligand with PyMOL 
2.5.2 software. The protein was prepared by adding the 
hydrogens, and the ligand had its -3 formal charge added by 
MOPAC using the PM7 semiempirical method. 

The cluster 700 was chosen to perform molecular docking 
of the triazole derivatives, since the new RMSD was 0,5779 Å 

instead of 1,0851 Å before the ensemble docking. The table 
S25 of supporting information show all clusters during this 
step. 

 

Intermolecular interactions 

The interactions between the amino acids from protein 
cluster 700 according to the ASP 7Å function are depicted in 
Figure 6. According to Discovery Studio Visualizer, the 
hydrogen bonds are shown in dark green, the weak van der 
Waals contacts are shown in light green, and the ionic 
interactions with magnesium (Mg2+) are shown in orange. 

 

 
 

 

Fig. 6. Interactions between the G2P ligand and the amino acids present in the β-tubulin protein, derived from the cluster with the lowest 
RMSD, selected after molecular dynamics. 

 

To identify the interaction of the fungicide with the 
protein's active site, carbendazim was downloaded from 
PubChem (ID: 25429) and optimized with a mülliken charge 
using the PM7 method. When its protonation level in the 
Marvin Sketch was examined, it was found to have zero total 

charge. Next, the binding affinity of carbendazim was 
predicted using molecular docking. In addition, the best 
candidates from the library of compounds that obtained the 
best antifungal activity results were analyzed using QSAR 
models, as shown in Table 4. 

 

 

 

 
Fig. 7. Interactions between carbendazim and the modeled protein β-tubulin (7ZCW.1. G), after molecular docking. The carbendazim-

protein complex was extracted from the Gold software with the solution that obtained the highest score for the ASP 7 Å function. 
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Table 4. List of the amino acids that interact with the crystallographic ligand of the β-tubulin protein (7ZCW), which were also detected in 
the compound library after prediction of the antifungal activity of the QSAR models. 

Ligand Cristal 15 20 21 22 25 27 CBZ  

    

 

 

 

 

 

 

 

 

vdW 

H-C 

H 

π-stacking 

Halogen (F) 

π-Sulfur 

π-Cation 
 

Asn204 x x x x x x x 

Asn226 x x x x x x x 

Cys12 x x x x x x x 

Gln11 x x x x x x x 

Asn99 - x x x x x - 

Asp67 - x x - x x - 

Gly142 - x x x x x - 

Ser145 - x  - x x - 

Gly144 - x x x x x - 

Gly10 - x x - x x - 

Thr143 - x  x x x - 

Gly141 - x x x x x - 

Ser138 x x  x x x - 

Glu181 - - x - - - - 

Leu225 - -  - - - x 

Leu207 - -  - - - - 

Ile16 x x x x x x x 

Gln15 x x x x x x x 

Tyr222 x x x x x x x 

Val175 x -  - - - - 

 

TOXICITY PREDICTION 

The six best triazoles with the highest antifungal activity 
predicted by the QSAR-2D and 3D models were subjected to a 
toxicity test using ProTox II (https://tox-
new.charite.de/protox_II/index.php?site=home). This website 
analyzes features of the most common fragments and 
chemical similarities to predict different toxicity parameters. 
These computerized toxicity predictions are helpful because 
they lessen the need for animal testing. These compounds 
were also subjected to quantitative estimation of similarity to 
fungicidal compounds (QEF), as proposed by Avram and 
colleagues [68]. 

This method is based on six pertinent descriptors that are 
likewise utilized in Lipinski's rule of five but have different 
values in this context as guidelines for producing a fungicide 
that can be predicted accurately. Thus, the molecular weight 
(MW), hydrophobicity (LogP), number of donors and 
acceptors of hydrogen bonds (HBD), number of rotatable 
bonds (RB), and number of aromatic bonds (arR) were 
employed for study. 

To support these new compounds, these data were 
obtained from the Swiss ADME service 
(http://www.swissadme.ch/). The results are presented in 
Annex IX on supplementary material. Compound 15 is 
particularly remarkable because it did not exhibit any toxicity 
throughout the toxicity testing of the ProTox II server. 

Both triazoles are classify as rated 4 for toxicity, and 
neither of these candidates violates Lipinski's rule of five, 
which is an excellent result because it allows us to predict the 
oral bioavailability profile of new molecules [69]. As Fusarium 
graminearum is the main target of triazoles, these compounds 

should not, nevertheless, have a high bioavailability for 
humans, particularly for the compounds that demonstrated a 
likelihood of ≥ 50% liver toxicity, carcinogenicity and 
mutagenicity. To ensure the safety of these drugs, in vitro 
testing should be conducted even though QSAR models 
anticipate excellent biological activity against F. graminearum. 

An analysis was subsequently conducted using the 
"QEPest" tool, which computes data for three classes of 
pesticides, to quantitatively evaluate the fungicidal effect of a 
specific molecule. The input data for each triazole are 
displayed in Table S20 on annex IX on supporting information, 
and the prediction outcomes are shown in Table 5. Using this 
information, the program predicted the three classes of 
pesticides: herbicides (QEH), insecticides (QEI) and 
fungicides (QEF). The values for finding a new compound 
were ≥ 0.72 for herbicides. ≥ 0.57 for insecticides and ≥ 0.6 for 
fungicides. 

Table 5. Final results of compound prediction for the three 
classes: herbicide (QEH). Insecticide (QEI) and fungicide (QEF). 

Compound QEH QEI QEF 

15 0.7032 0.5705 0.6025 

20 0.3782 0.0 0.2128 

21 0.4421 0.0 0.2865 

22 0.4452 0.0 0.2819 

25 0.3829 0.0 0.2171 

27 0.3855 0.0 0.267 

Carbendazim 0.4749 0.3549 0.4401 

 

For many years, carbendazim was the most commonly 
used fungicide for treating Fusarium, but the QEPest 
experiment revealed that triazole 15 had more satisfactory 
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outcomes. Carbendazim has been produced and used 
extensively for several decades despite being thought to be 
hazardous and mutagenic to humans, as indicated by the 
ProTox II server. As numerous studies have already noted, 
carbendazim is more likely to pose a threat to human health 
in this scenario, even though its toxicity prediction is ranked 
as 6. As a result, its marketing has been halted in certain 
nations, including Brazil. 

 

Molecular Dynamic (MD) Simulations 

MD simulations were used to assess the interaction 
mechanism and stability of beta tubulin protein with the 
triazole derivative 15 and the commercial fungicide 
carbendazim, using the crystallographic ligand G2P as a 

control for the protein 7ZCW.  Evaluations were done on the 
RMSD, RMSF, SASA, Rg, hydrogen bond analysis, and their 
affinities for binding with MM/GBSA. 

Figure 8 shows that there was stability of the protein in all 
the complexes from 100 ns. The stability of the protein was 
also verified by analyzing the Solvent Accessible Surface Area 
(SASA) and the Radius of gyration (Rg), illustrated in figure S3 
in annex VII on supplementary material, respectively. The 
SASA analyzes the exposure of the protein-receptor of the 
simulated complexes and determines how much the protein 
has been exposed to the solvent. With the turning radius (Rg), 
it is possible to calculate the structural compaction of the 
systems along the trajectory, in order to determine whether 
the complexes are folded or unfolded in a stable way [69]. 

 

 

Fig. 8. Refers to the RMSD analysis of the protein in relation to the protein of the CBZ, T15 and G2P complexes over 200 ns of 
simulation. 

 

We computed residual flexibility as RMSF (root mean 
square fluctuation) in order to establish a stronger connection 
between protein flexibility and the binding of these ligands. 
Higher stability is indicated by results with lower RMSF values, 
which are associated with residues in the protein's beta sheet 
and alpha helix regions. Higher values, on the other hand, 
suggest that the residues have varied more and are typically 

located in loop regions [70]. Accordingly, as Figure 9 
illustrates, the measurements showed some differences in 
the protein's backbone, pointing to the presence of specific 
peaks with larger variations that perfectly corresponded to the 
regions of residues 39–43, 276-280, 400–405, and 426. These 
are loop areas, according on a crystallographic structure 
analysis. 

 

Fig. 9. RMSF analysis of the CBZ, T15, G2P and white complexes after a 200 ns molecular dynamics trajectory. 
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The active site of the protein is characterized by residues 
8-16, 67-69, 72, 96-101, 104, 136-148, 167-172, 175-178, 181, 
185, 204-205, 207-208, 221-226 and 229.  To assess the 
fluctuations of these regions, we zoomed in on each band of 
the RMSF graph, which can be seen in Figure S1 (Annex VII of 
the supplemental material). In summary, T15 stabilized the 
protein in the following locations by interacting more with 
residues 8–16, 72, 96–101, 167–168, 204–208, and 221-229. 
Alternatively, CBZ was more active in regions 67–69, 72, 102–
104, 138–139, 145–148, and 175–185. 

The hydrogen bonds for each system during the 
simulation are displayed in Figure S2 in Annex VII of the 
supplemental material. As seen in the molecular docking, the 
G2P ligand has the most H-bonds overall. The fact that the 
molecule is substantially bigger than the others and has a 

phosphate group-rich end is one reason for this. In contrast, 
the CBZ ligand included more hydrogen bonds than T15. 
Despite the fact that CBZ and T15 only have one H-bond with 
the amino acid Asn226 according to the docking reports, it is 
still feasible to observe how the complex's behavior can be 
altered by the physiological environment as a result of 
dynamics. This may be explained by the fact that CBZ was the 
single ligand to leave the original location and go throughout 
the protein. 

Estimating the free energy of interaction is crucial to 
understanding the ligands' interactions. With the support of 
the program gmx_MMPBSA v1.6.1 [71, 72], the binding affinity 
of the ligands could be determined and depicted in Figure 10 
using the MM/GBSA approach. 

 

 

Fig. 10. MM/GBSA energy graph for carbendazim, triazole 15 and G2P, respectively. 

 

A few frames that may have affected the energy peaks 
were examined. The CBZ, T15, and G2P are shown in Figures 
11 A, B, and C, respectively, at various points in time. It is 
evident that the CBZ envelops the protein and then moves 
behind it starting at 188 ns. The energy profile shows an 
abrupt peak change at 175 ns, with a spike to 0 kcal/mol after 
it was initially at -15 kcal/mol. The CBZ finds a new location 
about 190 ns and stays steady at -18 kcal/mol. In an effort to 
achieve stability, T15 slightly modifies its conformation at the 
beginning of the simulation. It eventually fits in more at 
position 3 (140 ns forward) and keeps this conformation until 
it reaches its minimal energy. This is seen in the MM/GBSA 
graph, where the smallest peak appears just before 150 ns. 
T15 then stabilizes at -44 kcal/mol at the end, retaining a 
conformation that is remarkably similar to the one that came 
before it. On the other hand, G2P, initially docked, undergoes 
a rearrangement in a new position and maintains this 
conformation until the end of the simulation. 

3. Material and Methods  

Building of QSAR models 

To generate QSAR-2D and 3D models, a set of 27 
quinazolin-4(3H)-one derivative molecules was employed, and 
their correspondingly antifungal activities against Fusarium 
graminearum were taked from Wang and coworkers [16], as 
illustrated in Table 6. Following a charge assessment at 
physiological pH 7.4, all of the molecules were drawn in 
MarvinSketch 12.94 and had a total charge of zero. Molecular 
descriptors were utilized as independent variables, while the 
in vitro inhibitory concentrations (or EC50 values; μmol/mL) of 
the substances were transformed into corresponding 

negative logarithms (pEC50 values), as dependent variables. 

Using the Sybyl-X program, the alignment was completed 
based on compound 25, which was the most active. The PM7 
[20], RM1 [20], AM1-BCC [21], Gasteiger-Hückel [22], 
Gasteiger-Marsili [22, 23], MMFF94 [24], HF 3-21G [25], HF 6-
311G [26], DFT 6-311G (B3LYP) [27] and RESP HF 6-311G [28] 

methods were used to compute the atomic partial charges of 
the molecules after alignment. The aim was to choose the 
model that best fit the different types of atomic partial 
charges. 

 

Division into training and testing groups 

The PaDEL Descriptor v2.21 program was used to first 
compute the fragment count and topological and geometric 
descriptors to ensure proper separation. 

All descriptors that had a variance of 0.1 or less were 
initially removed from the model because they could not be 
used to categorize structures. In the second stage, all the 
remaining descriptors were evaluated for high correlation 
between them; i.e., when a pair of descriptors had a high 
correlation between them, one of them was excluded to avoid 
possible overfitting [29]. 

Using the clustering process carried out by the k-medoid 
algorithm, the remaining descriptors were fed into the k-
medoid Clustering GUI 1.1 program 
(https://dtclab.webs.com/software-tools) to divide the 
compounds into training (19) and test (8) sets. This 
division ensured that the biological activity and the 
diversity of structures, molecules, and chemicals were 
preserved. A statistical model was not generated using the 
substances in the test group [30]. 
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A          0                                      5000                            18800                                18900                                19500 

 
  
B              0                                    7500                               14000                                17400                               20000 

 
 
C              0                                       375                                1500                                9000                                   17000  

 
Fig. 11. A: CBZ in 0, 5000, 18800, 18900 and 19500 frames. B: 0, 7500, 14000, 17400, 20000 frames. C: 0, 375, 1500, 9000 and 17000 

frames. 

 

Table 6 - All the structures used in the training and test sets are listed, and their pEC50 values were calculated as mol.L-1. Compound 25 
was the most active between all them, and for this purpose, it was used as a model for aligning all the compounds by distill rigid generated 
by Sybyl-X. 

TRAINING SET 

 

1 – pEC50: 3.9485 

 

 

2 – pEC50: 5.3139 

 

4 – pEC50: 5.1005 

 

6 – pEC50: 4.0962 

 

7 – pEC50: 3.1027 

 

8 – pEC50: 3.0488 
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11 – pEC50: 4.1858 

 

12 – pEC50: 5.2601 

 

14   – pEC50:    5.1494 

 

15 – pEC50: 3.4659 

 

16 – pEC50: 4.2947 
 

18 – pEC50: 4.1391 

 

19 – pEC50: 5.2894 

 

21 – pEC50:  4.9635 

 

22 – pEC50: 3.8510 

 

23 – pEC50: 4.4228 

 

24 – pEC50: 4.2894 

 

25 – pEC50: 5.4505 

 

27 – pEC50: 5.1383 

TEST SET 

 

 

3 – pEC50: 5.2718 

 

 

5 – pEC50: 3.2950 

 

9 – pEC50:.2938 

 

10 – pEC50: 4.2263 

 

13 – pEC50: 5.1619 

 

17 – pEC50: 3.1901 

 

20 – pEC50: 5.1462 

 

26 – pEC50: 5.2611 

 

Carbendazim* – 

pEC50: 5.6380 

*Carbendazim was not part of the training and test division but was subsequently used as a test for activity prediction. 

 

QSAR-2D 

The QSAR-2D model was produced by inputting the 
descriptors from the training and test separation into the Best 

Subset Selection v2.1 algorithm 
(https://sites.google.com/site/dtclabmlrbss/), which 
analyses every conceivable combination of descriptors. The 
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Jamovi v2.3 (2022) program was used to conduct a thorough 
analysis of the best statistical models that were produced. 
When using descriptors, statistical processing is essential for 
enhancing their prediction power. Thus, following linear 
regression, each model's Durbin–Watson autocorrelation test 
(DW < 2), variance inflation factor (VIF < 5), Shapiro–Wilk 
normality test (p > 0.05), R, and modified R² (> 0.6) were 
computed to verify the assumptions. Finally, biological activity 
was predicted using the best-found equation. 

 

QSAR-3D 

Following molecular alignment and partial atomic charge 
calculations, QSAR-3D CoMFA and CoMSIA models were 
produced using the training set's molecular field interactions 
(MIFs). The QSAR module found in Sybyl-X (v2.1.,Tripos, Inc., 
St. Louis, MO, USA) was used to conduct these studies. 

The compounds were placed into a grid, or three-
dimensional box, and assigned a minimum distance between 
0.5 to 2 Å the box's edges and the aligned compounds. Like a 
sp³ carbon and with a +1 charge, a molecular probe from the 
SYBYL-X 2.1.1 program passes across each grid intersection 
point, producing numerical values in each quadrant. 
Variations in the model's coefficient weights and grid distance 
are encouraged by a procedure known as focusing. The 
chosen focus (0.5, 1.0, or 1.5 Å) determines the reading 
variation distance (d). The three focuses were utilized to 
create a thorough scan of the molecule to enhance the 
creation of the 3D models. We not only changed the grid 
spacing but also multiplied the weights by the model 
regression coefficient (w) variation of each point. These 
weights ranged from 0.3 to 0.9, as previously published by De 
Paula and coworkers [31]. This can be compared to the image 
enhancement of the CoMFA and CoMSIA models. 

A PLS analysis was performed during the first validation 
phase to determine the relationship between the biological 
activity levels (pEC50) and the CoMFA molecular fields. The 
model was then cross-validated using the leave-one-out (LOO) 
technique. At this point, Sybyl provides the ideal number of 
components in addition to the cross-validation prediction's 
(SEP), q2 and standard error. The final step involved repeating 
the PLS analysis using the optimal number of components 
that were previously acquired to calculate the standard error 
of the estimate (SEE) and the correlation coefficient (r²). 

To create multivariate statistical models in CoMSIA, the 
models were also assessed using the partial least squares 
(PLS) method. The results such as the correlation coefficient 
(r²), cross-validation coefficient (q²), and their corresponding 
errors (SEE and SEP) are given using the leave-one-out 
methodology [32]. 

 

COMPARATIVE MODELING 

A comparative modeling methodology was used to 
identify a protein that resembles the β-tubulin protein of F. 
graminearum, which is currently absent from the Protein Data 
Bank (PDB) database. Originally, the National Center for 
Biotechnology Information (NCBI) provided the primary 
sequence of the β-tubulin protein of the fungus F. 
graminearum Q4HZS8.1. To locate a potential model, three 
servers and software were utilized. Swiss Model, Phyre2, and 
Alphafold were used as the servers. Modeler was the program 
used. The Procheck [33] and Verify3D [34] servers 
(https://saves.mbi.ucla.edu/) were used to verify the quality 
of the templates created; the microtubule complex of Homo 
sapiens (PDB:7ZCW) was the best template selected. 

DOCKING MOLECULAR 

Using the GOLD 2022.3.0 program (CCDC Software Ltd., 
Cambridge, UK), the crystallographic ligand between the 
human tubulin protein's α and β chains (PDB: 7ZCW) was first 
redocked. Using the four scoring functions, Chemscore, ASP, 
GoldScore, and ChemPLP, which assess and score various 
ligand conformations with respect to the protein binding site, 
the redocking approach was executed at cavity diameters of 
5 Å, 7 Å, and 10 Å around the ligand. The best conformation of 
the ligand was then selected and analyzed by PyMOL v.2.5.2 
[35], and the interactions were highlighted by Discovery Studio 
Visualizer [36]. 

Following the redocking stage, the optimal configuration 
was determined for use in molecular docking. The quantity of 
interactions corresponding to the crystallographic ligand and 
the position of the ligand were used to determine which 
postures were optimal. 

 

MOLECULAR DYNAMICS SIMULATION 

Firstly, only the B monomer and its G2P ligand were 
included in the crystallographic protein found in the PDB 
(7ZCW). PyMOL software was used to extract both. By 
employing the Marvin Sketch program to examine the ligand's 
charges, a formal charge of -3 at physiological pH was found. 
The ligand needs to be parameterized using two programs: 
Mktop [37], which creates the ligand's '.top' output file; and 
Acpype [38] (using the keywords: acpype -i ligand.pdb -n -3), 
which will ultimately generate the '.gro' and '.itp' output files. 
The reason this parameterization matters is due to the fact it 
prepares the ligand for use as an input in molecular dynamics, 
which was done with the computational software GROMACS 
2016.4 (http://www.gromacs.org). Since OPLS/AA 
(Optimized Potentials for Liquid Simulations All Atoms) is 
targeted at organic molecules and biomolecular systems, it 
was selected as the force field [39]. 

The PropKa server [40] 
(https://www.ddl.unimi.it/vegaol/propka.htm) was used to 
determine the protonation state of the protein's amino acids. 
It calculates the pKa of amino acid residues at physiological 
pH 7.4. At this point, the amino acids Cys, Tyr, Lys, and Arg 
were protonated, and the protein had a formal charge of -15. In 
order to neutralize the overall charge, sodium ions had to be 
added to the system as counter-ions to balance the charges.  
TIP3P-type water molecules were contained in a cubic box 
with the system (protein, ligand, and Mg) positioned inside at 
a distance of 1.5 nm [41]. 

Energy minimization was carried out using the maximum 
slope method (by the Steepest Descent algorithm), which 
seeks to find the local minimum of the potential energy 
surface by making adjustments to the positions of the 
molecule's atoms.  This initial optimization of the system was 
carried out in up to 20,000 steps. Additionally, this approach 
seeks to remove any inaccurate initial structures that may 
have been introduced during system formation and could 
have resulted in a simulation failure.[42] The Newton–Raphson 
approach, which employs both first-order and second-order 
derivatives to identify an ideal search direction and apply the 
necessary parameter adjustments, was subsequently used to 
minimize the system [43]. 

To accommodate the water molecules in the system, the 
improved protein‒ligand complex was initially subjected to 
500 ps of molecular dynamics at 310 K. This process involved 
restricting the position of the β-tubulin atoms connected to 
G2P. After this, at 100 ns, molecular dynamics were 
performed without position constraints at 310 K and 1 bar of 
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pressure, with a cutoff radius of 10 Å for van der Waals and 
electrostatic interactions and an integration time interval of 2 
fs (0.002 ps). Using a Berendsen barostat, this stage was 
conducted with a constant set of particle number, pressure, 
and temperature (NPT) [44].. To preserve the integrity of the 
molecules and enable a more stable and realistic 
representation during the molecular dynamics simulation, the 
Particle Mesh Ewald (PME) algorithm [45] was utilized to 
calculate the electrostatic interactions, and the LINCS 
algorithm [46] was used to constrain the bonds between the 
atoms. 

 

TRIAZOLE-DERIVATIVE NATURAL PRODUCTS SCREENING 

After the QSAR models were constructed, the next step 
was to apply them to predict the antifungal activity of our 
study group's library of compounds produced from triazole 
derivatives from thymol [17], flavonone [18] and isatin 
derivatives [19]. MarvinSketch 12.94 was used to construct 
the 32 compounds, which were then optimized, and their 
charges were assessed at physiological pH. Compounds 5, 
19, and 25 had formal charges of -1, whereas the other 
compounds had formal charges of zero. These structures can 
be seen in Annex VI in supplemental information. 

As previously reported, the optimal model equation for 
these novel triazole-derived compounds was utilized in QSAR-
2D. 

For the CoMFA and CoMSIA (QSAR-3D) models, the 
compounds were aligned based on the docking method [47]. 
The protein and crystallographic ligand (PDB ID: 7ZCW) 
served as inputs for the Gold 2022.3.0 software. Using the 
same score function validated by the redocking method, it was 
possible to find different poses and select only those that 
contained the triazole ring superimposed on the 
crystallographic ligand and the most active quinazoline 
derivative compound (25) for use in building the QSAR 
models. Subsequently, the partial atomic charges were 
calculated using the same method used to determine the best 
model. The probes were subsequently inserted into Sybyl-X, 
and the same procedure was carried out on the basis of the 
best focus of the model. 

4. Conclusions  

The ProTox II server's prediction does not pose any 
dangers to human health to compound 15, that demonstrated 
enough data to qualify as a potent fungicide (QEF = 0.6025). 
This makes compound 15 an outstanding choice for 
controlling the fungus that causes fusariosis. This thymol-
derived triazole also demonstrated insecticidal activity (QEI = 
0.5705). Note that the CoMFA model (QSAR-3D) indicated that 
this compound had good predicted antifungal activity with a 
pEC50 = 4.727 mol.L-1 was observed for F. graminearum. 

The results of molecular dynamic simulations indicate the 
stability of the protein throughout the simulation, 
corroborated by the RMSD, SASA and Rg analyses. In terms of 
binding affinity, the triazole derived from thymol (15) showed 
more interactions in the active site regions, even though 
carbendazim showed more in the hydrogen bond interactions. 
On the other hand, in terms of energy, T15 had a more 
effective interaction with the β-tubulin protein compared to 
the commercial fungicide carbendazim. The MM/GBSA 
results revealed a 2.4-fold higher energy for the triazole 
compared to carbendazim. 

Thus, it is plausible to conclude that a promising molecule 

was found by building these models. We propose that this 
triazole molecule be used in F. graminearum in vitro tests for 
future study, in order to experimentally confirm the biological 
activity suggested by the in-silico analysis presented here. 
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