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Computational Methods as Screening Toll for Triazole
Natural Products Derivatives as Potential B-Tubulin
Inhibitors for Fusarium graminearum
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Phytopathogenic fungi like Fusarium graminearum are the cause of the disease gibberellosis, also known as
Fusarium head blight (FHB). This disease shows significant losses in agriculture and effects on global economy.
Nevertheless, this condition can be reduced with the use of commercial fungicides. Thus, this work describes
computational studies performed on a group of natural products triazole derivatives using as starting point a small
library of quinazolines synthesized by the literature. These quinazolines were applied to build QSAR models.
Furthermore, using the Swiss Model server, a comparative modelling of the B-tubulin protein was realized to test
the models and the compound 15, a triazole derivative of thymol successfully was further through both the QEPest
and ProTox Il toxicity tests. The behavior and stability between compound 15 and B-tubulin were then evaluated
by 200 ns of molecular dynamics in comparison to carbendazim as standard inhibitor. Finally, the compound 15
revealed a stable complex with the protein throughout the simulation, exhibiting low fluctuations in the RMSF,
indicating good interactions with the residues present. The investigation of the free energy of binding supports
this, showing that whereas carbendazim had an MM/GBSA of -18 kcal/mol, thymol-derived 15 had an MM/GBSA
of -44 kcal/mol.
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1. Introduction

Currently, one of the most significant crops in agriculture
is the wheat (Triticum spp.), that provides food and nutrition
for both humans and animals [1]. Fusarium graminearum is
the causative agent of gibberellosis and is also known as
Fusarium head blight (FHB). This fungus affects mainly
cereals such as wheat, corn, oats, and barley. Losses are
demonstrated by lower grain quality and crop production, as
well as the presence of mycotoxins in the grain [2], that causes
billion of dollars in losses annually [3] and are harmful to
animal and human health [4].

The disease can be observed at the spike stage of the
plant and particularly during the flowering stage, which can
last until the grain starts to ripen. A pink clump of spores that
forms on the spikelet and is readily seen in the field is
indicative of symptoms [5]. Alternatively, as a result of the
pathogen's internal growth and subsequent propagation
inside the spike, the spikelets may blanch prematurely.
Furthermore, the grains become wrinkly, shriveled, and
variably colored when the fungus settles on them, impairing
their ability to mature [6]. Since the early 1970s, Fusarium has
been extensively controlled with benzimidazole fungicides [7].
The most often utilized member of the benzimidazole
chemical group is methyl-2-benzimidazole carbamate, also
known as carbendazim.

Natural fungicidal products are emphasized, with a focus
on the idea of "sustainable agriculture" and their role in
lowering fungal infections in the agricultural ecosystem. They
serve as effective tools for combating various issues related
to infections, pathogenesis, and disease protection [8].
Besides, there is a growing trend in incorporating natural
products into inhibitor discovery programs [9]. Althought,
natural products can target tubulin as inhibitor or promoter the
microtubule’s polymerization [10]. Additionally, they have the
ability to interfere with the synthesis of tubulin, which can stop
mitosis, induce apoptosis, and prevent microtubule assembly
[11].

Synthetic fungicides target the pB-tubulin protein by
preventing the construction of a and B heterodimers, which
are essential for biological functions such as cell motility,
division, and signaling [12]. The fungus dies as a result of the
inhibition of microtubule production, which creates
multinucleated cells that are unable to divide. Carbendazim
has been used so frequently that it is now a recurring
contaminant in both soil and water. According to previous
studies, the imidazole ring significantly combines fungicide
residues and metabolites into the organic matter of the soil,
allowing the fungicide to persist in the environment [13].

New techniques were developed to produce substances
that are less damage to the environment in an effort to
mitigate these effects. To aid in the development of novel
agrochemical candidates with strong antifungal potential,
computational techniques such as Quantitative Structure-
Activity Relationship (QSAR) analysis are used to provide
crucial information on the relationship between chemical
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Consequently, minor modifications to the molecule's structure
can instantly affect its bioactivity, which makes this technique
essential for optimizing chemical items that have not been
tested before [15]. So, we used a group of 27 quinazoline
derivatives described and analysed their biological activity
against F. graminearum by Wang and coworkers [16] to
constructed the models of QSAR-2D and 3-D.

Molecular dynamic simulation and docking molecular are
two more essential in silico ways to analyze the behavior of a
protein and its ligand. Although each has its unique
characteristics, both are typically utilized to comprehend the
compley, its interactions, and their binding affinity. After the
methods for treating FHB illness were identified, we
suggested screening natural product-derived triazoles found
in the literature [17-19] to determine their potential as B-tubulin
inhibitors against Fusarium graminearum.

2. Results and Discussion

QSAR-2D MODELS

The computation of molecular descriptors is required
when building models. Therefore, the PaDEL program was
used to describe the compounds and provide a numerical
representation of their properties. Descriptors with high
correlation were eliminated. The 19 compounds that were
separated to create the QSAR models during the process of
division training (70%) and testing (30%) using the k-medoid
GUI v1.1 software were the compounds that were used to
develop the models. As stated in the approach above, eight
compounds that were separated during the test were used for
validation.

Using Best Subset Selection software, descriptors whose
model yielded a g2 above 0.6 and had the strongest
association with biological activity were found. After that, the
data were further processed with the Jamovi program (2022),
allowing for the creation of a statistically meaningful model.
The topological descriptors JGI1 and VE3_D in Table 1
represent the best model; the remaining descriptors are
included in annex | in the supplementary material.

For external validation, the antifungal activity of the test
set was predicted using equation 1. The difference between
the experimental and predicted pECsos was used to compute
the residuals. Since Model 4 had the highest r2es = 0.764
produced the best predicted correlation coefficient, it was the
best. See the additional material, annex | for viewing the other
models. Notably, the model's predictive capacity increases as
the predicted correlation coefficient (r2.st) becoming closer to
1. This approach is relevant to the external validation of the
models using the test set. In statistical modeling, a model is
desired to be able to explain a significant portion of the
variability in the test data, as shown by an R? close to 1.

The generated model can be visualized by the following
linear combination:

structure and biological activity from a substance. This PECso= 5.43+23.87 *JGI1+1.33 *VE3_D (Eq. 1)
method greatly lowers operational expenses by simplifying
the process of finding new bioactive chemical [14].
Table 1. Statistical outcomes of the best model found using QSAR-2D as determined by Jamovi software.
QSAR-2D
Model Descriptors present R? R? adjusted DT VIF Shapiro-Wilk q? r2
Watson fest

4 JGI1 - VE3_D 0.797 0.771 1.46 1 0.491 0.743 0.764
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CoMFA MODEL

Table 2 displays the best model validation findings for
each type of partial atomic charge, where the models were
fitted at several theoretical levels: ab initio (HF 3-21G and HF
6-311G), semiempirical (PM7, RM1, AM1-BCC), empirical
(Gasteiger, Gasteiger-Hiickel, and MMFF94), and DFT
(B3LYP/6-311G). The annex Il of supplementary material
contains the outcomes of every focus model.

The loads determined by the AM1-BCC method produced
better results, with lower prediction error (SEP = 0.134) in the
leave-one-out method and subsequently greater g2 (0.980)
among the findings produced by the internal validation of the
training set of molecules (19). However, cross-validation (q2)
alone is not enough to validate the model because, according
to Leemans et al. [48], for the prediction to be reliable, it needs
to be validated using the molecules in the test set. The
external validation performed by the test set will inform the
predicted r2, which must be above 0.5 [49].

Consequently, all of the models underwent external
validation, producing an rZ.s for each of the eight test
molecules loaded with various partial atomic charge types to
determine the predicted biological activity. Among the models
presented, the one with the best predictive capacity was the
restricted electrostatic potential (RESP) charge model using
the HF 6-311G method, which obtained the highest predicted
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correlation coefficient (r?test = 0.834).

Madhavan et al. [28] reported that, compared with
empirical or semiempirical models, QSAR models with more
complex partial atomic charge calculations, such as HF and
DFT calculations, exhibited a stronger correlation with
biological activity. This partially corroborates the findings of
this work since the semiempirical PM7 method outperformed
the DFT method in terms of outcomes. Therefore, as COMFA
is a comparative molecular field analysis technique that
focuses on steric and electrostatic fields, the PM7-derived
charges more adequately captured the effects relevant to this
analysis.

CoMSIA MODEL

Three additional descriptors, hydrophobic, donor, and
hydrogen bond acceptor, that are absent from CoMFA are
used in the CoMSIA method [15]. The descriptors that most
significantly influenced the type of partial atomic charge that
was estimated are included in Table 3. It is evident that the
most prominent characteristics for this training set are
hydrophobic and electrostatic. The model was not improved
by adding additional parameters. The annex Il of
supplementary material contains the outcomes of every focus
model.

Table 2. The statistical characteristics that correspond to the QSAR-3D CoMFA models that were developed based on partial atomic

charge calculations. Model regression coefficient (W) and focus (D).

Statistical parameters PLS - COMFA

Charge Methods q? SEP r2 SEE N 12 test S E Focus

PM7 0.946 0.217 0.997 0.05 6 0.664 0.412 0.588 WO0.7D1.0
RM1 0.941 0.227 0.997 0.054 6 0.008 0.466 0.534 WO0.7D1.0
Gasteiger-Marsili 0.909 0.251 0.956 0.176 3 0.181 0.534 0.466 W0.7D1.0
Gasteiger-Hiickel 0.894 0.272 0.961 0.165 3 0.296 0.540 0.460 W0.7D1.0
MMFF94 0.902 0.280 0.994 0.068 5 0.413 0.406 0.594 W0.7D1.0
AM1-BCC 0.980 0.134 0.997 0.048 6 0.476 0.384 0.616 W0.7D1.0
HF 3-21G 0.841 0.332 0.950 0.187 3 0.316 0.505 0.495 W0.7D1.0
HF 6-311G 0.826 0.348 0.959 0.169 3 0.809 0.479 0.521 W0.7D1.0
DFT 6-311G 0.569 0.531 0.855 0.307 2 0.659 0.439 0.561 W0.3D1.0
RESP HF 6-311G 0.834 0.340 0.958 0.171 3 0.834 0.481 0.519 WO0.7D1.0

For internal validation, the following equation was used: g2 Loo - cross-validation coefficient calculated using the "leave one-out" method;
SEP - standard error of prediction; N: number of components; r? - correlation coefficient; and SEE - standard error of estimate. For external
validation, the r?est was used to predict the correlation coefficient. Fractions: S: Steric; E: Electrostatic.

Table 3. The statistical characteristics that correspond to the QSAR-3D CoMSIA models that were developed based on partial atomic

charge calculations. Model regression coefficient (W) and focus (D).

Statistical parameters PLS - COMSIA

Charge Methods Focus q? SEP r? SEE N 12 test A E S H D
PM7 WO0.7D1.5 0.941 0.21 0.986 0.103 4 0.542 0.461 - 0.403 0.135
RM1 WO0.7D1.0 0.974 0.14 0.985 0.105 4 0.784 0.564 - 0.436 -
AM1-BCC WO0.7D1.0 0.95 0.209 0.991 0.088 6 0.644 0.059 0.533 - 0.355 0.053
Gasteiger-Marsili WO0.9D1.5 0.956 0.195 0.987 0.106 6 0.858 - 0.415 - 0.585 -
Gasteiger-Hiickel WO0.9D1.5 0.931 0.219 0.973 0.137 3 0.816 - 0.381 - 0.619 -
MMFF94 WO0.9D1.5 0.94 0.205 0.974 0.134 3 0.728 0.072 0.446 - 0.482 -
HF 3-21G WO0.9D1.5 0.865 0.343 0.972 0.157 6 0.791 - 0.648 - 0.352 -
HF 6-311G WO0.9D1.5 0.749 0.418 0.927 0.226 3 0.803 - 0.636 - 0.364 -
DFT 6-311G WO0.9D1.0 0.915 0.272 0.910 0.242 2 0.601 - 0.561 - 0.439 -
RESP HF 6-311G W0.9D1.0 0.780 0.392 0.924 0.229 3 0.857 - 0.511 - 0.489 -

For internal validation, the following equation was used: g2 Loo - cross-validation coefficient calculated using the "leave one-out" method;
SEP - standard error of prediction; N: number of components; 12 - correlation coefficient; and SEE - standard error of estimate. For external
validation, the r2est was used to predict the correlation coefficient. Fractions: S: Steric; E: Electrostatic.

Compared to all other methods, the CoMSIA model's

predictive ability utilizing the Gasteiger—Marsili method (r?est
= 0.858) was the most accurate; the CoMSIA model was
constructed with only electrostatic (E) and hydrophobic (H)
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descriptors. Despite the similarity to the model calculated with
the RESP HF 6-311G charges, whose predicted r?.st was 0.857
in the external validation, it did not have a higher g2 (oo than
the Gasteiger—Marsili model.
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The CoMFA and CoMSIA models both satisfy the
requirements that a q2 oo > 0.5 and a r? = 0.5 be established
to achieve accuracy in estimating biological activity. Thus,
according to Kumar and coworkers [50], who determined that
descriptors are critical for linking observed activity, all the PLS
models that were generated were statistically significant.
Moreover, the outcomes of the external validation indicated
that the created model has outstanding accuracy.

A scatter plot was created with all of the training (orange)
and test (blue) compounds for improved visibility, as shown in
Graph 1.

The results below yield the r?.s;, which was 0.764 for
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QSAR-2D, 0.834 for CoMFA, and 0.858 for CoMSIA. The
results of the external validation suggest that the models
generated had excellent accuracy.

The kind of partial atomic charge that is employed directly
affects the precision of QSAR models. As noted by Kumar et
al. [50] the estimation of these charges yields a higher cross-
validation coefficient (q2.00) and computes the molecular
interaction fields (MIFs), which in turn explains the variance of
chemical structures with respect to their biological activity. In
addition to g2, the correlation coefficient (r2) is an important
parameter for assessing the quality of PLS analysis, where it
indicates predictive ability and self-consistency [51].

Graphic 1. Correlations of the experimental and predicted pECso values for the training (orange) and test (blue) sets.
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Contour maps

Contour maps serve as useful tools for identifying regions
where chemical changes may impact biological activity. It has
the ability to highlight the areas in which any modifications in
the elements will have an influence on the steric, electrostatic,
and hydrophobic characteristics as well as the ability to
donate and accept hydrogen bonds, which may result in
alteration of the biological property in question [51].

The polyhedra on the maps are colored; those in yellow
and green indicate the locations that are favorable or
unfavorable for bulky groups (steric factors), respectively. The
regions represented by red and blue polyhedra indicate the
regions in which the electronegative groups are unfavorable
or favorable for fungicidal activity, respectively. These regions
should be emphasized because they can be utilized to change
structures and create novel compounds [15]. The contour
maps were created using the training set's highest active
chemical (25).

The contour map with steric effects from the comparative
molecular field analysis (CoMFA) is shown in Figure 1. The
presence of bulky aromatic groups is likely the reason why the
yellow regions are considered unfavorable regions. This is
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evident from the fact that the pECsy value of compounds
containing bulky groups in this area was lower. A large yellow
contour placed on the benzene ring indicates that larger
substituents are not preferred in this region, as Krishna et al.
[51] noted in their steric effect map. According to Walter,
Almeida, and Nunes [52], a yellow surface indicates that
smaller ligands promote steric interactions, increasing the
biological activity of the examined molecule. Therefore, the
most active compound (25) in this study has only one chlorine
atom in the yellow region.

The contour map incorporating the electrostatic effect
shows that the addition of electronegative elements is likely
beneficial and can increase the predicted activity, as indicated
by the blue polyhedra (SYBYL-X, 2013). When added at the
end, substituents that increase the negative electrostatic
potential should boost activity, which is regulated by the blue
region of the molecule [52]. Consequently, as illustrated in
Figure 1, the most active chemical (25) in this map has highly
electronegative nitrogen and oxygen atoms within its
structure, yet these are encircled by the blue zone. Conversely,
red polyhedra represent areas where positive charges are
advantageous; in these locations, negatively charged atoms
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render the molecule unsuitable for biological activity. In
contrast, the lone fluorine atom in the set of training
molecules is located in the red polyhedron, an area that is
unfriendly to electronegative groups. Despite this, the
compound remained the most active of all the others.

Fig. 1. COMFA contour map of the most active compound (25),
with the RESP charge HF6-311G at a focus W0.7D1.0.
Sterically disadvantaged areas are shown in yellow polyhedra.
Electrostatically favored areas are shown in blue polyhedra.
Source: Images taken from Sybyl-X.

Figure 2 displays the CoMSIA contour map, which was
created using the Gasteiger—Marsili model; the descriptors
used were hydrophobic (58.5%) and electrostatic (41.5%). El-
Mernissi et al. [53] also noted these two interactions and
concluded that they were important for enhancing inhibitory
activity. Based on these two descriptors, they created four
novel tubulin protein inhibitors.

The presence of hydrophilic groups in the magenta region
tends to increase biological activity, since this region are
unfavorable for the hydrophobic action of the most active
molecule (25). This area of the molecule is unfavorable for the
inclusion of benzene rings or apolar groups, and the addition
of more apolar groups often reduces biological activity. In
support of this idea, substitutions of hydrophilic groups such
as hydroxyl groups increase biological activity, according to
Nilewar and Kathiravan [54]. Since the hydrophobic area is
unfavorable, Ashraf and colleagues [55] also verified that
activity increases when this region is replaced by hydrophilic
molecules.

The region shown in blue is advantageous for the
substituent there, which in this case is fluorine, with reference
to the electrostatic action on CoMSIA. This area favors the
presence of electronegative atoms, which increases the
biological activity of this element.

The least active molecule (8 with pECso = 3.0488) only has
substituents on Rz (2 Cl), whereas the most active molecule
(25 with pECsp = 5.4505) has substituents on Ry (Cl) and R (F).
Compound 25 has a chlorine at the -to position (R;), but
compound 8 does not have any substituents on the
quinazoline ring. This difference in ring structure can be used
to explain why compound 25 has a greater electrostatic
potential than compound 8. The compound's activity is
increased by substitution by electron-donating groups, as
shown by the blue contour in the R, area. Ashraf and
coworkers [55] support this observation.

Therefore, fluorine is more effective than two chlorine
atoms, which is what happens with the compound with the
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lowest biological activity. Since fluorine is more
electronegative than chlorine, this explains the difference in
antifungal activity between these two compounds.

Fig. 2. CoMSIA contour map of the most active compound
(25), with Gasteiger-Marsili charge at focus W0.9D1.5. The
electrostatically favored area is shown in the blue polyhedron.
The nonfavored hydrophobic areas are shown in magenta
polyhedral.

TRIAZOLE-DERIVATIVE NATURAL PRODUCTS SCREENING

Triazole derivatives are widely utilized globally and are
strategically evaluated due to their ability to reach a broad
range of species, for example, through foliar spraying on
growing crops such as cereals and horticulture or through
seed treatment [56]. Since the 1970s, triazole fungicides have
been widely employed in agriculture to protect plants due to
their high chemical stability and low biodegradability [57]. The
biological activity predictions for every molecule in our library
group are shown in Table S25 on Annex VI of the
supplemental material, which is the result of the QSAR-2D and
-3D models' development and analysis. Nevertheless,
following model testing, Figure 3 displays the top candidates
with the highest biological activity.

Therefore, in terms of QSAR-2D, the best compounds are
21 and 25, from isatin, towards of to the 32 molecules from
the compound library employed in this in silico experiment.
CoMFA evaluates thymol (15) and isatin derivatives (20), and
only isatin derivatives (22, 27) are evaluated by CoMSIA.

BEST CANDIDATE COMPOUNDS

Contour maps are useful for the creation of new drugs
because they make it possible to determine whether a
substitute will be advantageous for increasing biological
activity. The library of compounds (triazole derivatives) was
superimposed using the CoMFA and CoMSIA contour maps
of the most active compound (25), as previously mentioned
(see Figure 4).

It is evident that various colors were used to highlight the
molecules in the compound library to distinguish the most
active molecule (25), which is shown in light blue. The six best
triazoles have tiny groups at the right end, as shown by
examining the steric fields. The positions in which the
triazoles were oriented in the correct directions according to
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the contour maps were chosen for docking-based alignment
at the crystallographic ligand site. As previously stated, yellow
polyhedra represent areas where only little ligands enhance
biological activity. Therefore, of the hundred conformations

OCH;
N=N,
o I

15

25

Orbital: Electron. J. Chem. 2025, 17(4), 322-338

that each triazole obtained during molecular docking, only
those containing smaller branches facing the ring of the
crystallographic ligand itself were selected.

o
21
N=N //giN
\ OCH
NN 3
v
0 F,c %0
27 0

Fig. 3. Structures of the compounds with the best biological activity predicted by the 2D and 3D QSAR models (CoMFA and CoMSIA).

It is well known that apolar regions negatively impact
biological activity in the hydrophobic zones found in the
CoMSIA contour map. Consequently, the presence of
hydrophilic components in the magenta zone enhances their
interaction. Regarding this, hydrophilic substituents are
present on the right side of triazoles compounds, in the same
area where a magenta polyhedron can be found in the CoMSIA
contour map. Furthermore, the triazoles 22 and 27 contributed
more to the higher antifungal activity than the more active
molecule (25) derived from quinazoline, which was utilized to
build the QSAR models.

Concerning the electrostatic field, it is well known that
biological activity tends to increase in the blue zone where
there are more electronegative atoms. Nitrogen and oxygen
were thus found in the contour map region, which was
advantageous for accessing these substituents on the

triazoles, which were determined to be the best candidates.
Compared to compound 25, which has the highest pECs
among the others, the compound generated from isatin 22
was more active in the model. It is evident that the
components, which are parallel to one another in both
compounds and have identical chain sizes, are similarly
positioned and aligned.

The most active compound (25) had an actual

experimental biological activity of 5.450 mol.L for the fungus
F. graminearum, whereas its predicted activity (pECso), as
determined by CoMSIA in the best model constructed, was
5.363 mol.L'. The more active compound was outperformed
in this regard by isatin-derived compounds 22 and 27, with 22
having a pECsg = 5.539 mol.L" and 27 having a pECsp = 5.509
mol.L 7.

Fig. 4. Overlay of the triazole compounds with the most active compound (25) (light blue color) from the training set of QSAR models.

As can be observed, the compound library was able to
predict a higher antifungal activity than the quinazoline-
derived compound 25 in the model, although it was still unable
to outperform the commercial fungicide carbendazim's
experimentally estimated activity (5.638 mol.L").
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COMPARATIVE MODELING

Since strong ligand-target receptor binding is necessary
for activity, studying the molecular structure of the B-tubulin
protein is crucial for comprehending the mechanism of action
of carbendazim [58].
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The NCBI database was utilized to obtain the main
sequence of the B-tubulin protein from the fungus Fusarium
graminearum, which the fasta code for this sequence was
Q4HZS8.1. Comparative modeling was performed using the
crystallographic structure of B-tubulin from the microtubule
complex of Homo sapiens (PDB: 7ZCW), which was also used
by Ramirez-Rios and associates [59], utilizing the Swiss Model
server (swissmodel.expasy.org/workspace/) [60].

A validation of the suggested model revealed GMQE
(Global Model Quality Estimate) values of 0.87 and QSQE
(Quaternary Structure Quality Estimate) values of 0.40; the
optimal values are above 0.7 [61]. The selected template was
7ZCW.1. G, which had 82.70% sequence identity. During the
modeling process, these values offer quality estimates. At the
tertiary and quaternary structure levels, GMQE and QSQE
provide the expected estimates of the final model, enabling
the identification of the best models [60].

A Qualitative Model Energy Analysis (QMEAN) of 0.84 +0.5
was the result of the Swiss Model's validation of the model.
The primary geometric features of the protein structures were
described by the scoring function (QMEAN), which indicates
that models with a quality score of 0.5 are of good quality [62].

Bindewald and Skolnick [63] revealed that a protein
extracted from the PDB should have a resolution of less than
3 A to enhance the focus on that interaction space and
support accurate atom visualization. Following comparative
modeling, the 7ZCW protein was suggested as a model, and it
has a resolution of 3.60 A. However, the validation of the
comparative modeling carried out by the PROCHECK and
VERIFY3D platforms (https://saves.mbi.ucla.edu/) showed a
quality and efficient model, where VERIFY3D observed 84.98%
of the residues with an average equal to or greater than 0.1.
The Ramachandran graph analysis results demonstrate that
the model's quality is good, with 91.4% of the torsional angles
falling inside the advantageous zone. An effective model of
acceptable quality must contain values above 90% of the
residues in favorable regions. This conformation provides
crucial information for selecting an effective model that does
not contain steric hindrance in the side chains of amino acids
[64]. In this regard, we concluded that the predicted protein
was validated with PROCHECK.

Since the modeled protein had no ligand, the template PDB
(7ZCW) was used, and all the chains (A, B, C, D, E, F, G, H) were
downloaded. According to the PDBSum platform
(http://www.ebi.ac.uk/thornton-srv/databases/pdbsum/),
chains A and E are identical, as are B= F= G=H and C and D.
To reverse the situation of the template protein (7ZCW.1. G)
without a ligand, the original ligands were inserted manually.
This procedure was checked in PyMOL, where an alignment
between the two proteins verified their overlap (RMSD = 0.208
A) and confirmed that the crystallographic ligand was in the
same location as the 7ZCW protein. Figure 5 shows the
PyMOL alignment of the template and the modeled protein.

Leucine (L) is located at position 240 of B1-tubulins in the
majority of phytopathogenic fungi, and this was confirmed in
this work using comparative modeling. Nevertheless, studies
have shown that some wild fungi in this same location also
contain phenylalanine (F) and that resistance to
benzimidazole fungicides is caused by this modification [65].
These data suggest that the protein that was constructed may
actually be fungicide sensitive rather than resistant.

DOCKING MOLECULAR
Redocking the ligand
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The coordinates of the crystallographic ligand of the PDB:
7ZCW protein were found using the redocking methodology in
the four scoring functions of Gold 2022.3.0 software
(https://www.ccdc.cam.ac.uk/solutions/software/gold/) -
GoldScore, ASP, ChemPLP and ChemScore. There are two
crystallographic ligands in this protein. The binding site
between the a and B chains of the tubulin protein is the
guanosine triphosphate (GTP) ligand, which interacts more
with the a chain and only one amino acid (Lys252) from the B
chain. Furthermore, only the B chain is connected to the
second ligand, G2P (guanylate ester of
phosphomethylphosphonic acid). Redocking was performed
on top of the G2P ligand since the protein that was modeled
following alignment with the model protein was more similar
toit, as illustrates in Annex VIl on supporting information. The
overlap of both ligands is also there.

When the RMSD (Root Means Square Deviation) is less
than 2 A, the approach is deemed acceptable and efficient
since it establishes the best fitting position between the ligand
and the protein [66]. In simple terms, it evaluates how well and
accurately the predicted ligand positions match the real (or
crystallographic) positions of the ligands when they bind to
the target protein.

Fig. 5. Protein model (in pink, 7ZCW.1. G) by Swiss Model
using the protein template (green: PDB: ZZCW). Alignment with
an RMSD of 0.208 A.

Molecular Dynamics Simulation and frame extraction

After the molecular dynamics was completed, the complex
under study had a collection of different conformations known
as frames, totaling 5000 frames throughout the course of the
100 ns journey. For comparative purposes, the ligand and
protein's RMSD over time were initially determined before
delving into the analysis of the individual frames obtained
from the molecular dynamics trajectory. The 50 best frames
were chosen after a cutoff was reached, with the lowest RMSD
values serving as the selection criterion. The supplemental
material contains the commands that are utilized.

Ensemble docking

By examining several protein conformations (extracted
from frames generated by molecular dynamics), it was
possible to find a range of potential interactions between the
protein and the ligand. This approach allowed for a more
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extensive investigation made feasible by the application of
ensemble docking.

The fifty frames with the lowest root mean square
deviation (RMSD) values were selected for redocking using
the Gold 2022.3.0 program via the same previously
standardized ASP 7 A score function. The selected cluster in
the ".pdb’ file was then separated from its ligand with PyMOL
2.5.2 software. The protein was prepared by adding the
hydrogens, and the ligand had its -3 formal charge added by
MOPAC using the PM7 semiempirical method.

The cluster 700 was chosen to perform molecular docking
of the triazole derivatives, since the new RMSD was 0,5779 A

Interactions
- Conventional Hydrogen Bond

I:l Carbon Hydrogen Bond

I:l van der Waals
I:l Attractive Charge
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instead of 1,0851 A before the ensemble docking. The table
S25 of supporting information show all clusters during this
step.

Intermolecular interactions

The interactions between the amino acids from protein
cluster 700 according to the ASP 7A function are depicted in
Figure 6. According to Discovery Studio Visualizer, the
hydrogen bonds are shown in dark green, the weak van der
Waals contacts are shown in light green, and the ionic
interactions with magnesium (Mg?*) are shown in orange.

Gly
98

Ala
97 Gln
15

Gly
140

Fig. 6. Interactions between the G2P ligand and the amino acids present in the B-tubulin protein, derived from the cluster with the lowest
RMSD, selected after molecular dynamics.

To identify the interaction of the fungicide with the
protein's active site, carbendazim was downloaded from
PubChem (ID: 25429) and optimized with a midilliken charge
using the PM7 method. When its protonation level in the
Marvin Sketch was examined, it was found to have zero total

charge. Next, the binding affinity of carbendazim was
predicted using molecular docking. In addition, the best
candidates from the library of compounds that obtained the
best antifungal activity results were analyzed using QSAR
models, as shown in Table 4.

Tyr
208

Asn
204

Leu
225

lle
16

GIn Cys
11 12

Interactions

- Fi-Sigma
|:| Pi-Sulfur

I:l van der Waals

- Conventional Hydrogen Bond
I:l Carbon Hydrogen Bond

Fig. 7. Interactions between carbendazim and the modeled protein B-tubulin (7ZZCW.1. G), after molecular docking. The carbendazim-
protein complex was extracted from the Gold software with the solution that obtained the highest score for the ASP 7 A function.
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Table 4. List of the amino acids that interact with the crystallographic ligand of the B-tubulin protein (7ZCW), which were also detected in
the compound library after prediction of the antifungal activity of the QSAR models.

20 21 22 25 27 CBZ

Ligand Cristal 15

Gly10
Thr143
Gly141
Ser138
Glu181 - - X - - - -

TOXICITY PREDICTION

The six best triazoles with the highest antifungal activity
predicted by the QSAR-2D and 3D models were subjected to a
toxicity test using ProTox I (https://tox-
new.charite.de/protox_ll/index.php?site=home). This website
analyzes features of the most common fragments and
chemical similarities to predict different toxicity parameters.
These computerized toxicity predictions are helpful because
they lessen the need for animal testing. These compounds
were also subjected to quantitative estimation of similarity to
fungicidal compounds (QEF), as proposed by Avram and
colleagues [68].

This method is based on six pertinent descriptors that are
likewise utilized in Lipinski's rule of five but have different
values in this context as guidelines for producing a fungicide
that can be predicted accurately. Thus, the molecular weight
(MW), hydrophobicity (LogP), number of donors and
acceptors of hydrogen bonds (HBD), number of rotatable
bonds (RB), and number of aromatic bonds (arR) were
employed for study.

To support these new compounds, these data were
obtained from the Swiss ADME service
(http://www.swissadme.ch/). The results are presented in
Annex IX on supplementary material. Compound 15 is
particularly remarkable because it did not exhibit any toxicity
throughout the toxicity testing of the ProTox Il server.

Both triazoles are classify as rated 4 for toxicity, and
neither of these candidates violates Lipinski's rule of five,
which is an excellent result because it allows us to predict the
oral bioavailability profile of new molecules [69]. As Fusarium
graminearum is the main target of triazoles, these compounds
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Halogen (F)

should not, nevertheless, have a high bioavailability for
humans, particularly for the compounds that demonstrated a
likelihood of = 50% liver toxicity, carcinogenicity and
mutagenicity. To ensure the safety of these drugs, in vitro
testing should be conducted even though QSAR models
anticipate excellent biological activity against F. graminearum.

An analysis was subsequently conducted using the
"QEPest" tool, which computes data for three classes of
pesticides, to quantitatively evaluate the fungicidal effect of a
specific molecule. The input data for each triazole are
displayed in Table S20 on annex IX on supporting information,
and the prediction outcomes are shown in Table 5. Using this
information, the program predicted the three classes of
pesticides: herbicides (QEH), insecticides (QEI) and
fungicides (QEF). The values for finding a new compound
were = 0.72 for herbicides. = 0.57 for insecticides and = 0.6 for
fungicides.

Table 5. Final results of compound prediction for the three
classes: herbicide (QEH). Insecticide (QEI) and fungicide (QEF).

Compound QEH QEI QEF
15 0.7032 0.5705 0.6025
20 0.3782 0.0 0.2128
21 0.4421 0.0 0.2865
22 0.4452 0.0 0.2819
25 0.3829 0.0 0.2171
27 0.3855 0.0 0.267
Carbendazim 0.4749 0.3549 0.4401

For many years, carbendazim was the most commonly
used fungicide for treating Fusarium, but the QEPest
experiment revealed that triazole 15 had more satisfactory
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outcomes. Carbendazim has been produced and used
extensively for several decades despite being thought to be
hazardous and mutagenic to humans, as indicated by the
ProTox Il server. As numerous studies have already noted,
carbendazim is more likely to pose a threat to human health
in this scenario, even though its toxicity prediction is ranked
as 6. As a result, its marketing has been halted in certain
nations, including Brazil.

Molecular Dynamic (MD) Simulations

MD simulations were used to assess the interaction
mechanism and stability of beta tubulin protein with the
triazole derivative 15 and the commercial fungicide
carbendazim, using the crystallographic ligand G2P as a

Orbital: Electron. J. Chem. 2025, 17(4), 322-338

control for the protein 7ZCW. Evaluations were done on the
RMSD, RMSF, SASA, Rg, hydrogen bond analysis, and their
affinities for binding with MM/GBSA.

Figure 8 shows that there was stability of the protein in all
the complexes from 100 ns. The stability of the protein was
also verified by analyzing the Solvent Accessible Surface Area
(SASA) and the Radius of gyration (Rg), illustrated in figure S3
in annex VIl on supplementary material, respectively. The
SASA analyzes the exposure of the protein-receptor of the
simulated complexes and determines how much the protein
has been exposed to the solvent. With the turning radius (Rg),
it is possible to calculate the structural compaction of the
systems along the trajectory, in order to determine whether
the complexes are folded or unfolded in a stable way [69].

RMSD
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Fig. 8. Refers to the RMSD analysis of the protein in relation to the protein of the CBZ, T15 and G2P complexes over 200 ns of
simulation.

We computed residual flexibility as RMSF (root mean
square fluctuation) in order to establish a stronger connection
between protein flexibility and the binding of these ligands.
Higher stability is indicated by results with lower RMSF values,
which are associated with residues in the protein's beta sheet
and alpha helix regions. Higher values, on the other hand,
suggest that the residues have varied more and are typically

located in loop regions [70]. Accordingly, as Figure 9
illustrates, the measurements showed some differences in
the protein's backbone, pointing to the presence of specific
peaks with larger variations that perfectly corresponded to the
regions of residues 39-43, 276-280, 400-405, and 426. These
are loop areas, according on a crystallographic structure
analysis.

RMS fluctuation
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Fig. 9. RMSF analysis of the CBZ, T15, G2P and white complexes after a 200 ns molecular dynamics trajectory.
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The active site of the protein is characterized by residues
8-16, 67-69, 72, 96-101, 104, 136-148, 167-172, 175-178, 181,
185, 204-205, 207-208, 221-226 and 229. To assess the
fluctuations of these regions, we zoomed in on each band of
the RMSF graph, which can be seen in Figure S1 (Annex VIl of
the supplemental material). In summary, T15 stabilized the
protein in the following locations by interacting more with
residues 8-16, 72, 96-101, 167-168, 204—208, and 221-229.
Alternatively, CBZ was more active in regions 67-69, 72, 102—
104, 138-139, 145-148, and 175-185.

The hydrogen bonds for each system during the
simulation are displayed in Figure S2 in Annex VII of the
supplemental material. As seen in the molecular docking, the
G2P ligand has the most H-bonds overall. The fact that the
molecule is substantially bigger than the others and has a
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phosphate group-rich end is one reason for this. In contrast,
the CBZ ligand included more hydrogen bonds than T15.
Despite the fact that CBZ and T15 only have one H-bond with
the amino acid Asn226 according to the docking reports, it is
still feasible to observe how the complex's behavior can be
altered by the physiological environment as a result of
dynamics. This may be explained by the fact that CBZ was the
single ligand to leave the original location and go throughout
the protein.

Estimating the free energy of interaction is crucial to
understanding the ligands' interactions. With the support of
the program gmx_MMPBSA v1.6.1 [71, 72], the binding affinity
of the ligands could be determined and depicted in Figure 10
using the MM/GBSA approach.
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Fig. 10. MM/GBSA energy graph for carbendazim, triazole 15 and G2P, respectively.

A few frames that may have affected the energy peaks
were examined. The CBZ, T15, and G2P are shown in Figures
11 A, B, and C, respectively, at various points in time. It is
evident that the CBZ envelops the protein and then moves
behind it starting at 188 ns. The energy profile shows an
abrupt peak change at 175 ns, with a spike to 0 kcal/mol after
it was initially at -15 kcal/mol. The CBZ finds a new location
about 190 ns and stays steady at -18 kcal/mol. In an effort to
achieve stability, T15 slightly modifies its conformation at the
beginning of the simulation. It eventually fits in more at
position 3 (140 ns forward) and keeps this conformation until
it reaches its minimal energy. This is seen in the MM/GBSA
graph, where the smallest peak appears just before 150 ns.
T15 then stabilizes at -44 kcal/mol at the end, retaining a
conformation that is remarkably similar to the one that came
before it. On the other hand, G2P, initially docked, undergoes
a rearrangement in a new position and maintains this
conformation until the end of the simulation.

3. Material and Methods

Building of QSAR models

To generate QSAR-2D and 3D models, a set of 27
quinazolin-4(3H)-one derivative molecules was employed, and
their correspondingly antifungal activities against Fusarium
graminearum were taked from Wang and coworkers [16], as
illustrated in Table 6. Following a charge assessment at
physiological pH 7.4, all of the molecules were drawn in
MarvinSketch 12.94 and had a total charge of zero. Molecular
descriptors were utilized as independent variables, while the
in vitro inhibitory concentrations (or ECsg values; pmol/mL) of
the substances were transformed into corresponding
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negative logarithms (pECso values), as dependent variables.

Using the Sybyl-X program, the alignment was completed
based on compound 25, which was the most active. The PM7
[20], RM1 [20], AM1-BCC [21], Gasteiger-Hiickel [22],
Gasteiger-Marsili [22, 23], MMFF94 [24], HF 3-21G [25], HF 6-
311G [26], DFT 6-311G (B3LYP) [27] and RESP HF 6-311G [28]
methods were used to compute the atomic partial charges of
the molecules after alignment. The aim was to choose the
model that best fit the different types of atomic partial
charges.

Division into training and testing groups

The PaDEL Descriptor v2.21 program was used to first
compute the fragment count and topological and geometric
descriptors to ensure proper separation.

All descriptors that had a variance of 0.1 or less were
initially removed from the model because they could not be
used to categorize structures. In the second stage, all the
remaining descriptors were evaluated for high correlation
between them; i.e.,, when a pair of descriptors had a high
correlation between them, one of them was excluded to avoid
possible overfitting [29].

Using the clustering process carried out by the k-medoid
algorithm, the remaining descriptors were fed into the k-
medoid Clustering GUI 1.1 program
(https://dtclab.webs.com/software-tools) to divide the
compounds into training (19) and test (8) sets. This
division ensured that the biological activity and the
diversity of structures, molecules, and chemicals were
preserved. A statistical model was not generated using the
substances in the test group [30].
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Fig. 11. A: CBZ in 0, 5000, 18800, 18900 and 19500 frames. B: 0, 7500, 14000, 17400, 20000 frames. C: 0, 375, 1500, 9000 and 17000
frames.

Table 6 - All the structures used in the training and test sets are listed, and their pECso values were calculated as mol.L". Compound 25
was the most active between all them, and for this purpose, it was used as a model for aligning all the compounds by distill rigid generated
by Sybyl-X.

TRAINING SET
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N N
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’ N _N N _N
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O H 0 H
F Br
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N\)LN/N Cl N\)LN/N \)kN’
0 H 0 H o :
Cl Cl
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*Carbendazim was not part of the training and test division but was subsequently used as a test for activity prediction.

QSAR-2D

The QSAR-2D model was produced by inputting the
descriptors from the training and test separation into the Best

Subset Selection v2.1 algorithm
(https://sites.google.com/site/dtclabmirbss/), which
analyses every conceivable combination of descriptors. The
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Jamovi v2.3 (2022) program was used to conduct a thorough
analysis of the best statistical models that were produced.
When using descriptors, statistical processing is essential for
enhancing their prediction power. Thus, following linear
regression, each model's Durbin—Watson autocorrelation test
(DW < 2), variance inflation factor (VIF < 5), Shapiro—Wilk
normality test (p > 0.05), R, and modified R? (> 0.6) were
computed to verify the assumptions. Finally, biological activity
was predicted using the best-found equation.

QSAR-3D

Following molecular alignment and partial atomic charge
calculations, QSAR-3D CoMFA and CoMSIA models were
produced using the training set's molecular field interactions
(MIFs). The QSAR module found in Sybyl-X (v2.1.,Tripos, Inc.,
St. Louis, MO, USA) was used to conduct these studies.

The compounds were placed into a grid, or three-
dimensional box, and assigned a minimum distance between
0.5 to 2 A the box's edges and the aligned compounds. Like a
sp? carbon and with a +1 charge, a molecular probe from the
SYBYL-X 2.1.1 program passes across each grid intersection
point, producing numerical values in each quadrant.
Variations in the model's coefficient weights and grid distance
are encouraged by a procedure known as focusing. The
chosen focus (0.5, 1.0, or 1.5 A) determines the reading
variation distance (d). The three focuses were utilized to
create a thorough scan of the molecule to enhance the
creation of the 3D models. We not only changed the grid
spacing but also multiplied the weights by the model
regression coefficient (w) variation of each point. These
weights ranged from 0.3 to 0.9, as previously published by De
Paula and coworkers [31]. This can be compared to the image
enhancement of the COMFA and CoMSIA models.

A PLS analysis was performed during the first validation
phase to determine the relationship between the biological
activity levels (pECso) and the CoMFA molecular fields. The
model was then cross-validated using the leave-one-out (LOO)
technique. At this point, Sybyl provides the ideal number of
components in addition to the cross-validation prediction's
(SEP), g2 and standard error. The final step involved repeating
the PLS analysis using the optimal number of components
that were previously acquired to calculate the standard error
of the estimate (SEE) and the correlation coefficient (r2).

To create multivariate statistical models in CoMSIA, the
models were also assessed using the partial least squares
(PLS) method. The results such as the correlation coefficient
(r?), cross-validation coefficient (q2), and their corresponding
errors (SEE and SEP) are given using the leave-one-out
methodology [32].

COMPARATIVE MODELING

A comparative modeling methodology was used to
identify a protein that resembles the B-tubulin protein of F.
graminearum, which is currently absent from the Protein Data
Bank (PDB) database. Originally, the National Center for
Biotechnology Information (NCBI) provided the primary
sequence of the B-tubulin protein of the fungus F.
graminearum Q4HZS8.1. To locate a potential model, three
servers and software were utilized. Swiss Model, Phyre2, and
Alphafold were used as the servers. Modeler was the program
used. The Procheck [33] and Verify3D [34] servers
(https://saves.mbi.ucla.edu/) were used to verify the quality
of the templates created; the microtubule complex of Homo
sapiens (PDB:7ZCW) was the best template selected.
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DOCKING MOLECULAR

Using the GOLD 2022.3.0 program (CCDC Software Ltd.,
Cambridge, UK), the crystallographic ligand between the
human tubulin protein's a and B chains (PDB: 7ZCW) was first
redocked. Using the four scoring functions, Chemscore, ASP,
GoldScore, and ChemPLP, which assess and score various
ligand conformations with respect to the protein binding site,
the redocking approach was executed at cavity diameters of
5A,7 A, and 10 A around the ligand. The best conformation of
the ligand was then selected and analyzed by PyMOL v.2.5.2
[35], and the interactions were highlighted by Discovery Studio
Visualizer [36].

Following the redocking stage, the optimal configuration
was determined for use in molecular docking. The quantity of
interactions corresponding to the crystallographic ligand and
the position of the ligand were used to determine which
postures were optimal.

MOLECULAR DYNAMICS SIMULATION

Firstly, only the B monomer and its G2P ligand were
included in the crystallographic protein found in the PDB
(7ZCW). PyMOL software was used to extract both. By
employing the Marvin Sketch program to examine the ligand's
charges, a formal charge of -3 at physiological pH was found.
The ligand needs to be parameterized using two programs:
Mktop [37], which creates the ligand's ".top' output file; and
Acpype [38] (using the keywords: acpype -i ligand.pdb -n -3),
which will ultimately generate the '.gro' and ".itp' output files.
The reason this parameterization matters is due to the fact it
prepares the ligand for use as an input in molecular dynamics,
which was done with the computational software GROMACS
2016.4  (http://www.gromacs.org).  Since  OPLS/AA
(Optimized Potentials for Liquid Simulations All Atoms) is
targeted at organic molecules and biomolecular systems, it
was selected as the force field [39].

The PropKa server [40]
(https://www.ddl.unimi.it/vegaol/propka.htm) was used to
determine the protonation state of the protein's amino acids.
It calculates the pKa of amino acid residues at physiological
pH 7.4. At this point, the amino acids Cys, Tyr, Lys, and Arg
were protonated, and the protein had a formal charge of -15. In
order to neutralize the overall charge, sodium ions had to be
added to the system as counter-ions to balance the charges.
TIP3P-type water molecules were contained in a cubic box
with the system (protein, ligand, and Mg) positioned inside at
a distance of 1.5 nm [41].

Energy minimization was carried out using the maximum
slope method (by the Steepest Descent algorithm), which
seeks to find the local minimum of the potential energy
surface by making adjustments to the positions of the
molecule's atoms. This initial optimization of the system was
carried out in up to 20,000 steps. Additionally, this approach
seeks to remove any inaccurate initial structures that may
have been introduced during system formation and could
have resulted in a simulation failure.l*2 The Newton—Raphson
approach, which employs both first-order and second-order
derivatives to identify an ideal search direction and apply the
necessary parameter adjustments, was subsequently used to
minimize the system [43].

To accommodate the water molecules in the system, the
improved protein-ligand complex was initially subjected to
500 ps of molecular dynamics at 310 K. This process involved
restricting the position of the B-tubulin atoms connected to
G2P. After this, at 100 ns, molecular dynamics were
performed without position constraints at 310 K and 1 bar of
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pressure, with a cutoff radius of 10 A for van der Waals and
electrostatic interactions and an integration time interval of 2
fs (0.002 ps). Using a Berendsen barostat, this stage was
conducted with a constant set of particle number, pressure,
and temperature (NPT) [44].- To preserve the integrity of the
molecules and enable a more stable and realistic
representation during the molecular dynamics simulation, the
Particle Mesh Ewald (PME) algorithm [45] was utilized to
calculate the electrostatic interactions, and the LINCS
algorithm [46] was used to constrain the bonds between the
atoms.

TRIAZOLE-DERIVATIVE NATURAL PRODUCTS SCREENING

After the QSAR models were constructed, the next step
was to apply them to predict the antifungal activity of our
study group's library of compounds produced from triazole
derivatives from thymol [17], flavonone [18] and isatin
derivatives [19]. MarvinSketch 12.94 was used to construct
the 32 compounds, which were then optimized, and their
charges were assessed at physiological pH. Compounds 5,
19, and 25 had formal charges of -1, whereas the other
compounds had formal charges of zero. These structures can
be seen in Annex VI in supplemental information.

As previously reported, the optimal model equation for
these novel triazole-derived compounds was utilized in QSAR-
2D.

For the CoMFA and CoMSIA (QSAR-3D) models, the
compounds were aligned based on the docking method [47].
The protein and crystallographic ligand (PDB ID: 7ZCW)
served as inputs for the Gold 2022.3.0 software. Using the
same score function validated by the redocking method, it was
possible to find different poses and select only those that
contained the triazole ring superimposed on the
crystallographic ligand and the most active quinazoline
derivative compound (25) for use in building the QSAR
models. Subsequently, the partial atomic charges were
calculated using the same method used to determine the best
model. The probes were subsequently inserted into Sybyl-X,
and the same procedure was carried out on the basis of the
best focus of the model.

4. Conclusions

The ProTox Il server's prediction does not pose any
dangers to human health to compound 15, that demonstrated
enough data to qualify as a potent fungicide (QEF = 0.6025).
This makes compound 15 an outstanding choice for
controlling the fungus that causes fusariosis. This thymol-
derived triazole also demonstrated insecticidal activity (QEI =
0.5705). Note that the COMFA model (QSAR-3D) indicated that
this compound had good predicted antifungal activity with a
pECso = 4.727 mol.L-" was observed for F. graminearum.

The results of molecular dynamic simulations indicate the
stability of the protein throughout the simulation,
corroborated by the RMSD, SASA and Rg analyses. In terms of
binding affinity, the triazole derived from thymol (15) showed
more interactions in the active site regions, even though
carbendazim showed more in the hydrogen bond interactions.
On the other hand, in terms of energy, T15 had a more
effective interaction with the B-tubulin protein compared to
the commercial fungicide carbendazim. The MM/GBSA
results revealed a 2.4-fold higher energy for the triazole
compared to carbendazim.

Thus, it is plausible to conclude that a promising molecule
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was found by building these models. We propose that this
triazole molecule be used in F. graminearum in vitro tests for
future study, in order to experimentally confirm the biological
activity suggested by the in-silico analysis presented here.
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