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ABSTRACT 

 

In this article we analyse the performance and strategies of students of the 7th grade of elementary school in the 

resolution of situations of the multiplicative field identified as situations of rectangular configuration. We 

classify the levels of reasoning and describe the concepts and theorems-in-action employed by them. These are 

terms used in the conceptual field theory to designate the knowledge present in the schemes mobilized by 

students in a problem situation. We collected the data by applying a test for students of a public school in Rio de 

Janeiro, and by interviewing them. The results point to students' difficulties in dealing with such situations. The 

error rates are very high and rise when the situation requires a division for its solution. However, we recognise 

that, even if students are wrong, they have knowledge that can serve as a basis for overcoming misconceptions 

and constructing concepts associated with the operations. 

KEYWORDS: Conceptual Field Theory. Multiplicative Field. Rectangular Configuration. 

Elementary School. 

 

RESUMO 

Neste artigo analisamos o desempenho e as estratégias de estudantes do 7º ano do Ensino Fundamental na 

resolução de situações do campo multiplicativo identificadas como situações de configuração retangular. 

Classificamos os níveis de raciocínio e descrevemos os conceitos e teoremas-em-ação empregados por eles. 

Estes são termos empregados na Teoria dos Campos Conceituais para designar os conhecimentos presentes nos 

esquemas mobilizados pelos estudantes numa situação problema. Coletamos os dados por meio da aplicação de 

um teste para estudantes de uma escola pública do Rio de Janeiro, e entrevista com os mesmos. Os resultados 

apontam para as dificuldades dos estudantes ao lidarem com tais situações. Os índices de erros são altíssimos e 

se elevam quando a situação requer uma divisão para sua solução. Todavia reconhecemos que, mesmo errando, 

os estudantes possuem conhecimentos que podem servir de base para a superação de ideias equivocadas e 

construção de conceitos associados às operações. 

                                                           

1   School of Education of Baixada Fluminense, State University of Rio de Janeiro / UERJ-FEBF, Duque de Caxias, Rio de Janeiro, Brazil; gabrielasb80@hotmail.com. 



169 

 

Perspectivas da Educação Matemática – INMA/UFMS – v. 12, n. 28 – Ano 2019 

 

PALAVRAS-CHAVE: Teoria dos Campos Conceituais. Campo Multiplicativo. Configuração 

Retangular. Ensino Fundamental. 

Introduction 

 

 The ideas discussed in this article stem from the research presented in GT2 

(Mathematics Education in the final years of Elementary and High-School Education) of the 

VII International Symposium on Research in Mathematics Education, under the title O 

desempenho de estudantes de sétimo ano do ensino fundamental em situações de 

configuração retangular/The performance of seventh-grade elementary students in situations 

of rectangular configuration. To deepen the reflections on that research, in this paper we 

describe and analyse the strategies employed by 7th-grade students to deal with problems 

belonging to the multiplicative field, specifically those involving the rectangular 

configuration, seeking to unveil concepts and theorems-in-action (VERGNAUD, 1990). For 

that, we chose to apply a test composed of 14 problem situations of the multiplicative field in 

a 7th-grade class from a school in the northern zone of Rio de Janeiro. Besides the rectangular 

configuration, the situations proposed in the test are also attached to the axes: simple 

proportion, double proportion, multiple proportion, and multiplicative comparison. It is a 

classification of the situations of the multiplicative field elaborated by Magina, Merlini and 

Santos (2012), in the light of the conceptual field theory. 

The data collected in this study interact with other studies, such as those developed by 

Magina, Merlini and Santos (2014), Souza (2015), Milagre (2017), Luna (2017) and Barbosa 

and Oliveira (2018). The first study, like this one, focused on the strategies employed by 

students in the 3rd and 5th grades of elementary school, but in problems of simple proportion, 

and pointed to a limited evolution of students' competence in dealing with multiplicative 

problems. The last study, also focused on students, investigated the strategies of 7th graders to 

deal with problems related to the product of measures, and offered a classification for such 

strategies. The last three research works, focused on teacher training, revealed that the 

teachers were unfamiliar with the possibility of classifying multiplicative situations, leading 

them to favour only one or two types of situation. Thus, they emphasise the need for 

continuing education for teachers who teach mathematics to review their teaching practices in 

the multiplicative field. 
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As Magina, Santos and Merlini (2014) and Barbosa and Oliveira (2018), who had the 

students as subjects of their research, we prioritised in this study the performance of the 7th-

grade students in situations of rectangular configuration. Resuming Barbosa and Oliveira's 

investigation (2018), we used the classification of strategies proposed by these authors, but 

we proceeded to identify the knowledge present in the mental schemes employed by the 

students, the said concepts and theorems-in-action (VERGNAUD, 1990).  

The rectangular configuration is one of the classes of the product axis of measures 

both in the classification of multiplicative structures proposed by Vergnaud (1990) and in the 

classification proposed by Magina, Merlini and Santos (2012). It encompasses problems in 

which continuous or discrete data is spread over rows and columns. The problems that 

involve the calculation of areas are examples. It is a class little explored by elementary school 

teachers, as indicated by the studies we mentioned earlier, and difficult for students to 

understand. Like all the research we have mentioned, we are grounded on Gérard Vergnaud's 

theory of conceptual fields. 

 

Conceptual Field Theory  

 

The conceptual field theory was developed in the 1970s by the French psychologist 

Gérard Vergnaud. For him, a conceptual field is "a set of situations whose treatment implies 

schemes, concepts and theorems in close relationship, as well as linguistic and symbolic 

representations that can be used to symbolise them" (VERGNAUD, 1990, p. 147). Mastering 

a conceptual field does not occur in two months, not even in a few years. On the contrary, 

new problems and new properties must be studied over several years for the student to master 

them entirely. From this perspective, a concept cannot be reduced to a definition, especially if 

we are interested in its teaching and learning.  

It is through the situations to be solved that a concept acquires meaning for the child. 

According to Vergnaud (1990), a concept is associated with the triad Situations (S), 

Invariants (I) and Representations (R), where S, I and R are sets defined as follows: S is the 

set of situations that make the concepts meaningful (combination of tasks), (I) is the set of 

invariants (objects, properties and knowledge contained in the strategies used to deal with 

situations) and R is the set of symbolic representations that can be used to characterize and 

represent these invariants, therefore, representing situations and procedures. 
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It should be clarified that Vergnaud (1990) defines situation as task. In each 

conceptual field, there is a wide variety of situations and children's knowledge is then shaped 

by the situations they encounter and progressively master. In summary, faced with a new 

situation, the individual adapts his or her previous knowledge and develops new, and 

increasingly complex, skills.  Thus, revealing the influences of the Piagetian theory are the 

situations that give meaning to the concept. The understanding of a concept does not emerge 

just from one type of situation, and a simple situation always encompasses more than one 

concept.  

 Following the triad supporting the concept, we have the invariants. According to 

Magina et al. (2001, p.12): 

Invariants are essential cognitive components of schemes. They can be implicit or explicit. 

They are implicit when linked to students' action schemes. In this case, although the students 

are not aware of the invariants they are using, they can be recognised in terms of objects and 

properties (of the problem) and relations and procedures (done by the student). Invariants are 

explicit when linked to a conception. In this case, they are expressed by words and / or other 

symbolic representations.  

 

There is no problem solving without putting into play the operative invariants (which 

are the hidden part of the conceptualisation) and the symbolic representations. It is also 

important to highlight that there is mathematical knowledge involved in invariants. This 

knowledge is implicit in students' actions in dealing with situations and, most of the time, they 

fail to explain them. They are knowledge that Vergnaud (1990) names knowledge-in-action 

and, because they make sense for the students, from them, the teacher can begin the process of 

conceptualisation. Hence, the relevance of the research such as the one we present in this 

article. In this way, Barbosa and Oliveira (2018, p.3) state: 

When we observe the strategies employed by students to deal with certain problem situations 

of the multiplicative field, inferring the knowledge involved in them, we offer elements that 

can guide the work of the teacher and the elaboration of teaching interventions that promote 

the learning of this field. 

 

In short, a teacher's work should, knowing the schemes mobilized by the students, 

favour the revision and construction of new schemes. Thus, Vergnaud calls scheme the 

invariant organization of the behaviour for a given class of situations (1990, p. 136; 1993, p. 

2; 1994. p. 53; 1996, p. 201; 1998, p. 168) and states that it is in the schemes that the 

knowledge-in-action of the subject must be investigated, i.e., the cognitive elements that make 

the action of the subject to be operative. There is much implicit in the schemes. Many 

schemes can be evoked successively, and even simultaneously, in a new situation for the 
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subject (1990, p.140). The conducts in a given situation rests on the initial repertoire of 

schemes that the individual has, and the cognitive development can be interpreted as 

consisting mainly of the development of a vast repertoire of schemes affecting very different 

spheres of human activity.  

 The expressions concept-in-action and theorem-in-action designate the knowledge 

contained in the schemes. Vergnaud also designated them by the more global expression: 

operational invariants. More specifically, Vergnaud (1990) divides the operational invariants 

fundamentally into two logical types: propositions and propositional functions. Invariant-type 

propositions are likely to be true or false. Theorems-in-action are invariants of this type. To 

clarify this logical type, Vergnaud (1990) gives, as an example, what children between 5 and 

7 years of age discovered. They realised that it is not necessary to count everything to get the 

cardinal of if A and B have already been counted. This knowledge can be expressed by 

a theorem-in-action:  

provided that ø. 

 Vergnaud (1990) proposes yet another example in recalling the moment when the 

child understands that in a trade situation, if the quantity of objects is multiplied by 2, 3, 4, 5, 

10, 100 or a simple number, then the price is 2, 3, 4, 5, 10, 100 times greater. For him, this 

knowledge can be expressed by the theorem-in-action  

 

  It is worth mentioning, however, that different situations involving a same concept 

may present varying degrees of difficulty, because they require different theorems-in-action 

from the child in their resolution. Limiting this idea to the learning of operations, Franchi 

(1999, pp. 159-160) adds: 

Research in the field has widely found that the type of mathematical operation mobilised in 

the problem-solving process does not constitute the essential factor of difficulty for children. 

Those factors are in the order of magnitude and nature of the - natural, rational etc.- numbers, 

in the textual structure, in the type of numerical referents (km, km/h, m); but are essentially 

situated in the thinking operations necessary to establish relevant relationships between the 

data of the problem. There may be a large gap in the students' mastery of two situations 

involving the same mathematical operations and different variables. 

 

BA

)()()( BCardACardBACard   BA

)()( xnfnxf 
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 The following problems presented by Magina (2002) allow us to exemplify Franchi's 

statement: 

 

 Problem A: Márcio invited three friends to his birthday party. For each friend he wants 

to give 5 marbles. How many marbles does he need to buy? 

 

 Problem B: Carlos will be celebrating his birthday. Every friend who comes to his 

party will get 3 balloons. He bought 18 balloons. How many friends can he invite? 

 

 The relevant concepts are the same for both situations, but situation B is much more 

difficult for seven or eight-year-olds because it involves reasoning back and finding the initial 

state. Such reasoning depends on a strong theorem-in-action: 

, 

where I is the initial state, F is the final state, T is the direct transformation, and T-1 is the 

inverse transformation.  

 Moreira (2002) discusses an example that may further elucidate ideas about concepts-

in-action and theorems-on-action. He suggests considering the following situation proposed 

by Vergnaud (1994, p. 49) for 13-year-old students: Flour consumption is, on average, 3.5 kg 

per week for ten people. How much flour is needed for fifty people for 28 days? One student's 

response: 5 times more people, 4 times more days, 20 times more flour; hence 3.5 x 20 = 70 

kg.  

  Citing Vergnaud, Moreira (2002) states that it is impossible to understand this 

reasoning disregarding the following theorem implicit in the student's mind: f(n1x1, n2x 2) = 

n1n2 f(x1,x2), i.e., Consumption (5 x 10, 4 x 7) = 5 x 4 Consumption (10, 7).  And he adds: 

Naturally, this theorem works because the ratios of 50 people to 10 people and 28 days to 7 

days are simple and obvious. It would not be so easily applied to other numerical values. 

Therefore, its scope of application is limited. Nevertheless, it is a theorem that can be 

expressed, for example, in words: Consumption is proportional to the number of people when 

the number of days is kept constant; and is proportional to the number of days when the 

number of people is kept constant. It can also be expressed by the formula C = k.P.D., where 

C is the consumption, P is the number of people, D is the number of days and k is the 

consumption per person per day. (MOREIRA, 2002, p.11) 

   

It becomes clear that the ways of expressing the reasoning discussed above are 

different and, as far as cognition is concerned, they present different levels of difficulty. On 
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this, Moreira (2002, p.11) concludes that those different ways of expressing the same 

reasoning are not cognitively equivalent. The second one is more difficult. They are 

complementary ways of explaining the same mathematical structure implicit in different levels 

of abstraction. 

 Turning now to propositional function type invariants, it is correct to say that, 

according to the theory of conceptual fields, they are not susceptible to being true or false, but 

they constitute the "bricks" indispensable to the construction of propositions. For example, the 

concepts of cardinal and collection, of initial state, transformation, and quantified relationship 

are indispensable to the conceptualisation of additive and multiplicative structures. Vergnaud 

(1990) insists, however, that these concepts are rarely explained by students, even though they 

are constructed by them in action. He also emphasises that the relationship between 

propositional function and proposition, and consequently between theorem-in-action and 

concept-in-action, is a dialectical relationship: there is no proposition without propositional 

function and there is no propositional function without proposition. In the same way, 

theorem-in-action and concept-in-action are constructed in close interaction (VERGNAUD, 

1990, p.164). 

 

The Conceptual Field of the Multiplicative Structures  

 

The conceptual field of multiplicative structures or multiplicative conceptual field is 

the complex of situations that encompass, simultaneously, the various multiplications and/or 

divisions with theorems that support those situations. As Luna (2017, p. 51) states, we can 

cite in this set "simple proportion and multiple proportion, direct and inverse scalar 

relationship, quotient and product of dimensions, linear combination and linear application, 

fraction, relationship, rational number, multiple and divisor etc.".  

Because it is a conceptual field, its appreciation and treatment encompass several 

types of specific symbolic concepts, procedures, and representations. Vergnaud (1990) 

classified the multiplicative relationships into two categories that encompass multiplication 

and division, terming them as ternary relations and quaternary relations. The ternary 

relations link three quantities that may be of a different nature. Quaternary relations, however, 

involve four quantities, two of which are of the same class and the other two belong to 



175 

 

Perspectivas da Educação Matemática – INMA/UFMS – v. 12, n. 28 – Ano 2019 

 

another class. Magina, Merlini and Santos (2012) constructed the table below in the light of 

Vergnaud's classification.  

Figure 1- Multiplicative structure diagram

  
Source - Magina, Santos and Merlini, published in SANTOS, 2015, p.105. 

In this paper, we emphasise the rectangular configuration, which, as can be seen in the 

table, is a class of the product of measures axis, which, in turn, corresponds to a type of 

ternary relation. In the product of measures, one quantity is the product of two others, in the 

same numerical and dimensional plane. An example of the rectangular configuration can be 

experienced in situations where the dimensions of a rectangle are given, and its area is 

requested. Assuming that the dimensions are in centimetres, the size of the area will be the 

square centimetre and the number corresponding to it will be obtained by the product of the 

dimensions.  

 

The Method 

 

To reach our objective, we applied a diagnostic test for 3 hours in a 7th-grade class 

(with 40 students) from a school in the western zone of Rio de Janeiro. Next, we informally 

interviewed them to have them explain their records and procedures. The test is composed of 

14 problem situations belonging to the multiplicative conceptual field. Of these, we focused 

on the two situations involving the rectangular configuration: one in which factors are given 

and the unknown is the product (factor-factor); and another in which one factor and the 

product are given and the unknown is the other factor (factor-product), which can be obtained 

by a division. We present the situations in Chart 1 below: 
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Chart 1 - Situations of the diagnostic instrument involving the rectangular and combinatorial 

configuration classes  
Status Statement Class Operation 

Q5 

Ruth wants to change the floor 

of her bedroom. This room is 3 

m wide and 6 m long. How 

many square metres of floor 

does Ruth need to buy? 

Rectangular 

configuration  

(factor-factor) 

Multiplication 

Q7 

Vera's garden area is rectangular 

and has 24 m2. The width is 4 m. 

What is the length, in metres, of 

this garden? 

Rectangular 

configuration  

(factor-product) 

Division 

Source: Research data (2014). 

First, we corrected the tests, and, for these questions, we quantified the wrong 

answers, the right answers and types of strategies the students employed. Next, we focused on 

the students’ strategies in Q5 and Q7, seeking to establish a classification for these strategies 

based on the classification Barbosa and Oliveira (2018) established. Next, we interviewed the 

students. We present here a qualitative analysis based on the crossing of the students’ records 

in the test with their speeches in the interviews, which were recorded and transcribed. Thus, 

our analysis fits into Goldenberg's (1999) conception of qualitative research. According to 

this author, in this type of research the researcher does not worry about quantifying the 

investigated group, but rather about the in-depth understanding of the reality of each 

individual, group, organization or institution, their trajectories and subjectivities.  

Data analysis  

 

We aimed to analyse all the strategies used by the students, both for wrong and right 

answers, and grouped them into categories according to their levels of complexity. As the 

studies of Barbosa and Oliveira (2018) also turned to the strategies employed by 7th-graders 

in the same problem situations, the categorisation presented here guided our analysis, and our 

data led us to three levels of complexity, namely: incomprehensible (level 1), additive (level 

2) and multiplicative thinking (level 3). Below, we introduce them, describing them and 

observing their incidence number.  
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At level 1, or incomprehensible level, are "the answers in which the student did not 

explain on paper the operation used to solve the problem or, when he/she did, we could not 

identify the reasoning used" (MAGINA, SANTOS & MERLINI, 2014, p. 9). Thus, part of 

this level included the strategies in which the student made a meaningless drawing for his or 

her resolution, repeated one of the numbers contained in the problem statement, or may have 

chosen other mathematical concepts other than the four fundamental operations, such as 

fractions and simplification of fractions, without being able to understand the reason for such. 

At this level, students' responses are invariably wrong. Chart 2 shows the number of strategies 

ranked at level 1 per question. 

Chart 2 - Quantitative of strategies ranked at level 1 per question 

Level 1 - Incomprehensible 

Question Incidence 

Q5 4 

Q7 8 

Source: Prepared by the author. 

Of the 72 non-null responses given to questions Q5 and Q7, 12 belonged to this level, 

being 4 of Q5 and 8 of Q7. If we compare question 5 with 7, we observed that this strategy 

was mostly present in Q7. We expected to find a configuration close to this chart’s, because, 

as Barbosa and Oliveira (2018) indicated, Q7 presents a degree of difficulty greater than Q5. 

This result is also in line with Franchi's ideas (1999), when he states that situations in which 

the final state is given and the transformation for students to discover the initial state are more 

difficult for them. It should also be noted that not even the students who produced such a 

result were able to explain their records and strategies when they were interviewed.   

Level 2, or level of additive thinking, encompasses strategies that involved an 

addition, a subtraction or any combination of these operations. Like Barbosa and Oliveira 

(2018), we found two distinct strategies of action at this level, which generated two sub-

levels: addition or subtraction of the numbers present in the statement (2A) and calculation of 

the perimeter instead of the area (2B).  

Also, at this level, students' responses are invariably wrong. Their incidences are 

shown in Chart 3: 
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Chart 3 - Quantitative of strategies classified in levels 2A and 2B  

Level 2 Additive 

 Q5 Q7 

2A Addition of data 10 4 

Subtraction of data 2 3 

2B Perimeter calculation 3 -  

Source: Prepared by the author. 

As we can see, although Q5 has several right answers well greater than Q7, the 

strategy 2A was quite used by the students in Q5, which surprised us. We cannot forget that 

this is a matter of immediate application of the concept of rectangle area, and that this should 

have already been mastered by 7th graders. However, as in Barbosa and Oliveira's study 

(2018), we were also surprised that the 3 students who subtracted the data in Q7 were among 

those who added the data in Q5. The observation of these data led us to hypothesise that the 

students recognised the difference between Q5 and Q7 and then concluded that the operation 

that would solve Q7 should be the inverse operation of the one that would solve Q5. 

However, as they still thought additively, they resorted to the subtraction, which is the 

addition inverse operation. Our hypothesis was confirmed when we interviewed the students. 

The transcript of the following interview confirms us: 

Researcher: Why did you subtract? 

Student: Because I knew I had to do the opposite. If in question 5 I added, in question 7 I thought I had 

to subtract. 

 

It is important to note that there was in the scheme employed by the student a series of 

mathematical knowledge, the so-called theorems-in-action and concepts-in-action. The 

recognition of the reversibility between addition and subtraction and the mastery of the 

algorithms of these operations are examples of this knowledge. The first, which may be true 

or false, is a theorem-in-action. The second, founding the theorem-in-action, corresponds to a 

concept-in-action. In a broader sense, we can also say that the association of the problem 

situation with an operation, which may also be true or false, can also be understood as a 

theorem-in-action. This theorem is evidently false, since addition and subtraction as they were 

employed do not solve problems of rectangular configuration. However, as the research works 

of Souza (2015), Milagre (2017) and Luna (2017) suggest, the teacher can use this knowledge 
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and propose new reflections and arguments so that ideas are discarded, and students start 

associating situations Q5 and Q7 to multiplication and division.  

With respect to Q5, we kept the statement as in Barbosa and Oliveira (2018). Barbosa 

and Oliveira (2018) pointed out that, for a rectangle of 3 units long and 6 units wide, the 

perimeter and area correspond to the same number, but with different units. Fortunately, in 

this question, all the students left their calculations registered and knew how to explain their 

strategies in the interviews, which allowed us to differentiate those who calculated the area 

from those who calculated the perimeter. 

In Magina, Santos and Merlini's studies (2014, p.12), at level 3, or level of transition 

from the additive to the multiplicative thinking, the strategy used by students "consisted of 

forming groups of the same quantity. It is a question of adding several times the same amount, 

whether it is represented by grouped icons (IIII IIIIIIII = 12), or numerically (4 + 4 + 4 = 

12)”.  According to these authors: 

Such strategy approaches multiplicative thinking, but is anchored in the additive 

reasoning, that is, forming groups of the same quantity to perform the addition 

operation. When the representation is pictorial, it is well demarcated by the groups 

drawn; when the representation is numerical, the strategy is explicitly the sum of 

equal parts. (MAGINA, SANTOS, MERLINI, 2014, p. 13) 

Considering these notions, Barbosa and Oliveira (2018) affirm that the product of 

measurements is one of the elements of rupture between the additive and multiplicative fields. 

Thus, in this study, as well as in the last one we have mentioned, there is no transition from 

the additive to the multiplicative thinking and level 3 is already the multiplicative level. 

However, it should be mentioned that in the calculation procedures presented by three 

students of level 3, we can still find the influence of the additive reasoning. The examples in 

Figures 2, 3 and 4 illustrate correct and incorrect responses that reveal this influence:  

 

 

 

 

 

 

 

Figure 2 - Additive thinking in Q7 / Multiplication calculation procedures 
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Source: Research data. 

Figure 3 – Additive thinking in the Q5 / Multiplication calculation procedures 

 
Source: Research data. 

 

A brief observation of the protocols suggests that students, in reading the statements, 

opted for operations in the multiplicative field and, in doing the calculations, resorted to 

additive thinking. This fact can be seen in the responses of two students to Q7 and one student 

to Q5. In view of the knowledge present in the schemes employed by the students, we can say 

that the understanding that multiplication is the repeated sum of parts is a concept-in-action. 

In the same way, it is also a concept-in-action the recognition that division is a successive 

subtraction of the same number. In Figure 4, we have a student protocol that has this concept-

in-action: 
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Figure 4 - Additive thinking in calculation procedures / Division 

 
Source: Research data. 

 

When interviewed, the student who produced this protocol explained: As I wanted to 

divide by 4, I wondered what number I had to take four times out of 24 until I had no 

remainder. I do this and it just does not work when the numbers are too big. 

It is a concept-in-action present in a scheme, which, according to the student himself, 

is not very effective, because with larger numbers, which are not part of the students' 

numerical repertoire, it becomes impractical.  Considering that our subjects have been 

studying the multiplicative structure for the fourth consecutive year, agreeing with Barbosa 

and Oliveira (2018), we consider how little such teaching has favoured the development of 

mental calculation procedures. The school's action of limiting the teaching of the 

multiplicative field to the repeated sum of parts and to the reproduction of multiplication and 

division algorithms prevents the construction of other concepts and properties of the 

multiplicative field. As Barbosa and Oliveira (2018: 14) point out, this may also be the cause 

of the high number of miscalculations and the students' inability to reflect on the wrong 

results they have produced. 

At level 3, or level of multiplicative thinking, the strategy that the student uses 

necessarily passes through the multiplicative structure. Faced with problem situations, our 

subjects whose answers fall into this level chose multiplication or division. When they chose 

to multiply in Q7, for example, the students found 96 or when they got the calculations 
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wrong, they found other numbers, but in all cases the numbers were greater than 24, the 

measure of the given area.  

Although the choice for multiplication or division to solve the questions already 

suggests the existence of theorems-in-action, our attention was drawn to the fact that the 

students did not realise how absurd the answers were, since the known dimension of the 

rectangle is a number greater than 1 and, under these conditions, it is impossible for the area 

measurement to be a smaller number than those corresponding to dimension measurements. 

Even among the 8 students who opted for the division in Q7, 3 made mistakes in calculations, 

producing absurd results, and did not realise it. Data such as those lead us to infer that the 

students experience a teaching that prioritises the mechanical reproduction of algorithms and 

formulas. The interview with one of these students reinforces our inference: 

Researcher: What did you think when you found 96? 

Student: Nothing! I went to do question 8 at once. 

Researcher: When you find a result, don't you think if it's right or wrong? 

Student: No! I thought a lot, but a lot, but at the time I was asking the question. When I finished, I went 

to do the other one. 

 

As we can see in this transcript, the student does not understand the need to think 

about the results he finds when he solves a problem. 

In Charts 4 and 5, we present the operation chosen and the number of calculation 

errors per question we found: 

Chart 4 - Quantitative of calculation errors per operation in Q5 

Question 5 

 No calculation error With miscalculation 

Multiplication  17 0 

Division  0 0 

Source: Prepared by the author. 

 

 

 

 

 

Chart 5 - Calculation errors per operation in Q7  
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Question 7 

 No calculation error With miscalculation 

Multiplication  7 5 

Division  5 3 

Source: Prepared by the author. 

Still considering the calculation procedures, it is important to note that in Q5 there 

were no calculation errors. On this fact, Barbosa and Oliveira (2018, p.17) infer that it is due 

to the numbers involved in the question. 3 and 5 are small numbers whose product appears in 

the tables that a good part of Brazilian students must memorise from an early age. 

Thus, it is possible that in situations where numbers are larger and are not in the usual 

tables, the number of errors for this type of question increases considerably.  

 

Final considerations  

 

The analysis of the results allows us to make two considerations: one from the 

quantitative point of view and the other from the qualitative point of view. Although it is not 

the focus of this article, regarding the quantitative point of view we highlight the high error 

rate in the two situations analysed, and especially in the question in which the product is 

given and one of the factors is requested. These data led us to emphasise how important it is 

for the teacher who teaches mathematics in elementary school to diversify the problem 

situations of the multiplicative conceptual field that propose to students not only among the 

classes suggested by Magina, Santos and Merlini (2014), but in the same class, to address the 

various possibilities of situating the unknown and the necessary data to the resolutions of the 

situations as suggested by Franchi (1999) and Moreira (2002). 

Regarding the qualitative analysis, from the strategies employed by the students, we 

identified three levels of reasoning (incomprehensible, additive and multiplicative). At the 

level of additive thinking, we also identified two sub-levels: one in which the student 

randomly sums up the data present in the statement and another in which the student confuses 

the concept of perimeter with the concept of area. In all the questions, we observe the 

privilege of the numerical representations to the detriment of the pictorial representations and 

we infer that this fact is due to a teaching based on the reproduction of algorithms.  We 
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believe that such a phenomenon may imply, in turn, the students' reduced ability to assess the 

often-absurd responses they provide to problem situations.  

In a superficial understanding, the results presented in this study can provoke a 

pessimistic view regarding the learning of the multiplicative field in the final years of 

elementary school. However, although students have produced many errors in the test, the 

analysis of their records and interviews also reveal concepts and theorems-in-action, that is, it 

is not correct to assume that students know nothing about multiplicative structures. Here we 

highlight the total and/or partial mastery of multiplication and division algorithms, the 

understanding of the reversibility between addition and subtraction and multiplication and 

division, the association of multiplication with the repeated sum of parts, and division with 

successive subtractions. It is evident that this knowledge is not enough to affirm that students 

already master the multiplicative field, however they can serve as starting point for a more 

conscious work from the teachers’ side, to promote the construction of other concepts 

belonging to this conceptual field.  
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