PORANDU - Revista de Divulgação Científica em Ciências Exatas e Tecnológicas https://periodicos.ufms.br/index.php/porandu <p><strong>(Revista descontinuada em 2019)</strong></p> pt-BR cesar.santos@ufms.br (César Klayson Soares dos Santos) cesar.santos@ufms.br (César Klayson Soares dos Santos) Fri, 06 Sep 2019 14:31:50 +0000 OJS 3.1.2.1 http://blogs.law.harvard.edu/tech/rss 60 Prefácio Edição 2019 https://periodicos.ufms.br/index.php/porandu/article/view/9019 César Klayson Soares Santos Copyright (c) https://periodicos.ufms.br/index.php/porandu/article/view/9019 Fri, 06 Sep 2019 13:56:30 +0000 Fundamentos de Design Combinatórios e aplicações em Códigos https://periodicos.ufms.br/index.php/porandu/article/view/7312 <div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>A teoria de design combinatório é uma estrutura que possui importantes padrões relacionados à construções de conjuntos finitos. Essa estrutura combina- tória teve suas origens mais formais com os trabalhos de Euler sobre quadrados latinos no fim do século XVIII. Como é uma área recente, os designs combinatórios contêm diversos problemas em aberto. Os designs combinatórios têm aplicações na elaboração e análise de estatística, também dispõem de muitas outras aplicações, como na programação, biologia, matemática, design e análise de algoritmos, redes, teoria de grupos, códigos e criptografia. Além disso, faz uso de conceitos como a de álgebra linear, grupos, anéis, corpo e teoria dos números. Iremos apresentar alguns exemplos de códigos corretores de erros, derivado de modelos simples, do ponto de vista combinatório e de visualização, o plano projetivo </span><span>BIBD </span><span>− </span><span>(7</span><span>, </span><span>3</span><span>, </span><span>1) </span><span>e o espaço cubo </span><span>3 </span><span>− </span><span>design</span><span>(8</span><span>, </span><span>4</span><span>, </span><span>1)</span><span>. Esses códigos são casos especiais de uma família de códigos, chamados códigos de Reed-Muller.</span></p></div></div></div> Jessica Roberta de Oliveira Moreira, Leandro Bezerra de Lima Copyright (c) https://periodicos.ufms.br/index.php/porandu/article/view/7312 Fri, 06 Sep 2019 00:00:00 +0000 Códigos Corretores de Erros https://periodicos.ufms.br/index.php/porandu/article/view/6736 <div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>Este artigo tem por principal objetivo apresentar os princípios teóricos de códigos corretores de erros, tema em que </span><span>C.E. Shannon </span><span>[1] é o pioneiro no estudo e forneceu uma descrição formal de um sistema de comunicação. Neste contexto, mostramos alguns tipos de canais (meio onde passa a informação) e métodos de codificação e decodificação em classes de códigos, além de alguns exemplos de có- digos, bem como os fundamentos matemáticos algébricos que envolvem a Teoria da Informação.</span></p></div></div></div> Marcos Vinicius Pereira Spreafico, Willian Ribeiro Zucarelli Copyright (c) https://periodicos.ufms.br/index.php/porandu/article/view/6736 Fri, 06 Sep 2019 13:34:42 +0000 Fundamentos de Geometria de Galois e aplicação em Códigos https://periodicos.ufms.br/index.php/porandu/article/view/7321 <div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>Este trabalho incide no estudo da geometria de Galois e aplicações em códigos corretores de erros. Serão estudados os seguintes temas: planos projetivos finitos, a teoria de códigos e as relações existentes com a geometria de Galois. A Geometria de Galois é definida como sendo espaços projetivos sobre corpos finitos. Já a teoria dos códigos dedica-se a detectar e a corrigir erros que são introduzidos quando são transmitidas mensagens. Por meio de dois modelos de planos projetivos, um de ordem dois e outro de ordem três, foi feita a compreensão dessa geometria. A partir disso, discutimos a existência de planos projetivos de outras ordens. Mediante o exposto, discutimos a conexão entre a geometria de Galois e a teoria de códigos, através do plano projetivo de ordem dois.</span></p></div></div></div> Gabrielly da Silva Roman, Leandro Bezerra de Lima Copyright (c) https://periodicos.ufms.br/index.php/porandu/article/view/7321 Fri, 06 Sep 2019 13:38:24 +0000 Grafos e os Coeficientes Trinomiais https://periodicos.ufms.br/index.php/porandu/article/view/6732 <div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>Este trabalho apresenta a relação entre o conjunto de caminhos reticu- lados que vão de </span><span>(0</span><span>,</span><span>0) </span><span>a </span><span>(</span><span>n,</span><span>0) </span><span>com passos </span><span>U </span><span>= (1</span><span>,</span><span>1)</span><span>, D </span><span>= (1</span><span>,</span><span>−</span><span>1) </span><span>e </span><span>H </span><span>= (1</span><span>,</span><span>0)</span><span>e o conjunto de árvores ordenadas com </span><span>n </span><span>+ 1 </span><span>arestas, com raiz de grau ímpar e nós com grau de saída no máximo dois. Ambos os conjuntos são contados pelos coeficientes centrais da expansão do trinômio </span><span>(1 + </span><span>x </span><span>+ </span><span>x</span><span>2</span><span>)</span><span>n</span><span>. </span><span>Para tanto, a partir de um exemplo envolvendo coeficientes binomiais, é apresentado a definição de coefi- ciente multinomial, assim como figuras para representar essa relação entre ambos os conjuntos.</span></p></div></div></div> Leandro Rocha, Elen Viviani Pereira Spreafico Copyright (c) https://periodicos.ufms.br/index.php/porandu/article/view/6732 Fri, 06 Sep 2019 13:40:34 +0000 Funções Geradoras em Recorrências Lineares https://periodicos.ufms.br/index.php/porandu/article/view/6710 <div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>Funções geradoras são utilizadas como ferramenta na resolução de pro- blemas de matemática discreta. Uma de suas principais vantagens é a capacidade de transformar questões que envolvam sequências de números reais em funções de uma variável, ampliando os recursos matemáticos para solucionar problemas que se apresentam em diversas áreas, tais como no livro </span><span>Liber Abaci </span><span>de Leonardo de Pisa (1202), em que introduz a famosa sequência de Fibonacci, e ainda na determinação de funções algébricas discutidas por Massazza e Sabadini [1]. Mais especificamente, nesse trabalho são abordados problemas envolvendo sequências de números reais definidas em relação a seus termos anteriores imediatos, também chamadas de re- lações de recorrência. As funções geradoras não se limitam a solucionar apenas recorrências, sendo também utilizadas como um método alternativo em exercícios de análise combinatória.</span></p></div></div></div> Lucas Santos Cardozo de Sá, Elen Viviani Pereira Spreafico Copyright (c) https://periodicos.ufms.br/index.php/porandu/article/view/6710 Fri, 06 Sep 2019 13:42:49 +0000 Uma Interpretação Combinatória para os Números de Catalan https://periodicos.ufms.br/index.php/porandu/article/view/6659 <div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p><span>O escopo desse trabalho é explorar a sequência numérica conhecida como números de Catalan através de uma abordagem com o uso de funções geradoras. Pretende-se introduzir conceitos e aspectos algébricos para algumas propriedades relacionadas a essas sequências e explorar uma interpretação combinatória por meio do conceito de triangulações de um poligono convexo.</span></p></div></div></div> Irene Magalhães Craveiro, Marcia Aparecida Garcia Teixeira, Marcia Aparecida Garcia Teixeira Copyright (c) https://periodicos.ufms.br/index.php/porandu/article/view/6659 Fri, 06 Sep 2019 13:44:55 +0000