
102 

 

Revista Saúde e Meio Ambiente – RESMA, Três Lagoas, v. 12, n. 1, p.102-120, janeiro/julho. 

2021. ISSN: 2447-8822. 

 

 

CELLULAR INTERACTIONS WITH IMPLANTED SURFACES IN THE LIVING ORGANISM AND 
OSSEOINTEGRATION OF IMPLANTS 

 
     ABSTRACT: The surface of a biomaterial is a platform for cellular migration and growth. Every biomaterial, when 

implanted in vivo, causes cellular and tissue responses. These include inflammatory and foreign body reactions, wound 
healing response and formation of fibrous capsule to a greater or lesser degree around the implant. Tissue growth in the 
interface of an implanted structure is a highly complex phenomenon that involves a variety of factors, some of them 
related to biomaterial and include its microarchitecture, mechanical properties of the base material, topography and 
roughness, both on a micrometric and macrometric scale. Regarding bone tissue specifically, a structure with 
interconnected pores is critical to mimic the extracellular bone matrix. The size of pores, porosity and interconnectivity 
between them determines the performance of the material in functions such as cell fixation and nutrient diffusion. 
Characteristics of the implant surface, such as roughness and porosity significantly influence cell differentiation and 
consequently bone growth and osseointegration. The focus of this review article is on the interactions of proteins with 
the surface of biomaterials implanted in the organism and the consequent activation of macrophages and development 
of a foreign body reaction. In addition, we described the mechanisms related to osseointegration of implants. 
Key words: biomaterial; foreign body reaction; macrophage; bone regeneration 

 
INTERAÇÕES CELULARES COM SUPERFÍCIES IMPLANTADAS NO ORGANISMO VIVO E 

OSTEOINTEGRAÇÃO DE IMPLANTES 
     RESUMO:A superfície de um biomaterial é uma plataforma para migração e crescimento celular. Todo biomaterial, 

quando implantado in vivo, causa respostas celulares e teciduais. Estas incluem reações inflamatórias e de corpo estranho, 
resposta de cicatrização de feridas e formação de cápsula fibrosa em algum grau ao redor do implante. O crescimento 
tecidual na interface de uma estrutura implantada é um fenômeno complexo que envolve uma variedade de fatores, alguns 
deles relacionados ao biomaterial e incluem sua microarquitetura, propriedades mecânicas do material de base, topografia 
e rugosidade, ambos em escala micrométrica e macrométrica. Em relação ao tecido ósseo especificamente, uma estrutura 
com poros interligados é fundamental para mimetizar a matriz óssea extracelular. O tamanho dos poros, a porosidade e a 
interconectividade entre eles determina o desempenho do material em funções tais como fixação celular e difusão de 
nutrientes. Características da superfície do implante, tais como rugosidade e porosidade influenciam significativamente a 
diferenciação celular e consequentemente o crescimento ósseo e a osseointegração. O foco deste artigo de revisão é a 
interação de proteínas com a superfície dos biomateriais implantados e a consequente ativação dos macrófagos e 
desenvolvimento de reação de corpo estranho. Além disso, descrevemos os mecanismos relacionados à osseointegração 
dos implantes. 
Palavras-chave: biomaterial; reação de corpo estranho; macrófago; regeneração óssea 

 
INTERACCIONES CELULARES CON LAS SUPERFICIES IMPLANTADAS EN EL ORGANISMO VIVO Y LA 

OSTEOINTEGRACIÓN DEL IMPLANTE 
     RESUMEN:La superficie de un biomaterial es una plataforma para la migración y el crecimiento de las células. Cada 

biomaterial, cuando se implanta in vivo, causa respuestas celulares y tisulares. Estas incluyen reacciones inflamatorias y 
de cuerpos extraños, respuesta de curación de heridas y formación de cápsulas fibrosas en algún grado alrededor del 
implante. El crecimiento de tejido en la interfaz de una estructura implantada es un fenómeno complejo que implica una 
variedad de factores, algunos de los cuales están relacionados con el biomaterial e incluyen su microarquitectura, las 
propiedades mecánicas del material base, la topografía y la rugosidad, tanto a escala micrométrica como macrométrica. 
En lo que respecta al tejido óseo específicamente, una estructura con poros interconectados es fundamental para imitar la 
matriz ósea extracelular. El tamaño de los poros, la porosidad y la interconectividad entre ellos determinan el rendimiento 
del material en funciones como la fijación celular y la difusión de nutrientes. Las características de la superficie del 
implante, como la rugosidad y la porosidad, influyen considerablemente en la diferenciación celular y, por consiguiente, 
en el crecimiento y la osteointegración del hueso. El enfoque de este artículo de revisión es la interacción de las proteínas 
con la superficie de los biomateriales implantados y la consiguiente activación de los macrófagos y el desarrollo de la 
reacción de cuerpos extraños. Además, describimos los mecanismos relacionados con la osteointegración de los 
implantes. 

     Palabras clave: biomaterial; reacción de cuerpo extraño; macrófago; regeneración ósea 
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Introduction  

Tissue growth at the interface of an implanted structure is a highly complex phenomenon 

involving a variety of factors encompassing a cascade of cellular and extracellular biological events 
1. Blood / biomaterial interactions begin to happen simultaneously after the implantation of the 

biomaterial, with adsorption of proteins on its surface and the development of a transient temporary 

matrix sustained in the thrombus that forms at the tissue / biomaterial interface and around it 2–4. 

When implanted in the tissues, the biomaterial will always incite a cellular immune response 2,3.  

Among the factors related to tissue growth on an implanted material, some are related to the material 

itself, and include its microarchitecture (existence or not of pores, relative density), mechanical 

properties of the base material and topography (roughness), both at macro, micro and nanometric 

scales 1,5,6. According to 7 and 8, the topographic characteristics of the biomaterial surface directly  

influence the behavior of the cells that are responsible for tissue repair through intracellular signal 

pathways mediated by their focal adhesion. Also, according to 8, the architectural orientation of the 

natural extracellular matrix regulates several cellular behaviors, such as cell polarity, migration 

capacity, adhesion and proliferation changing the cytoskeleton through the reorganization of actin 

filaments when the cells adhere to it. Consequently, many studies in the field of tissue engineering 

have been conducted in the direction of mimicking the extracellular matrix of various tissue types. 

Regarding bone tissue specifically, a structure with interconnected pores is critical to mimic 

the extracellular bone matrix 9,10. The size and number of the pores, besides the interconnectivity 

between them, determines the performance of the material in functions such as cell fixation and 

diffusion of nutrients, and these factors are directly related to the ingrowth of soft tissue and bone and 

also to the resistance of the bone-implant interface 1,10. According to 1, for proper bone ingrowth, the 

porosity of the biomaterial must be greater than 50%, and the pore size between 50 and 800 µm. 

However, it is widely known that the increase in the porosity of the implant leads to a decrease in its 

mechanical strength, although it is beneficial for tissue ingrowth 5. Adequate mechanical stability is 

mandatory to obtain the necessary mechanical support during the bone repair and regeneration 10. The 

need for stability leads us to observe that the design of the implant and the surface characteristics of 

the scaffold directly influence the application or use of the biomaterial, which may be needed 

temporarily (absorbable materials) or permanently 11. Therefore, the balance between porosity and 

mechanical resistance is the key to the success of porous biomaterials. 

Also, as previously mentioned, these characteristics are important in cellular differentiation 

and behavior since the biological tissues will interact mainly with the implant surface 8,11. The 
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interface between the surface of a porous implant and the cells determines cellular behavior, such as 

cell adhesion, dissemination and proliferation 10,12. Therefore, much attention has been given to tissue 

engineering, which seeks to develop materials such as scaffolds made of biocompatible material, like 

hydroxyapatite, collagen-based materials, bioglass, among others, which bind mechanically to bone 

tissue 5,13.  

With the expansion of research in tissue engineering and the development of new biomaterials, 

it is increasingly necessary to understand the interactions of tissues with implanted materials, since it 

is these interactions that will determine the success or failure of the implant.  However, according to 
14 although considerable attention is given to the development of biomaterials for clinical 

applications, many fail to match the functional characteristics of target tissues in vivo due to their low 

biocompatibility. In this way, the present work meets the need for a better understanding of 

biomaterial-tissue interactions, helping to clarify how they occur and how the biomaterial 

characteristics influence them. 

 

Protein adsorption 

The host's response to an implanted material begins immediately after its introduction and 

covers several overlapping phases, including injury, protein adsorption, acute inflammation, chronic 

inflammation, foreign body reaction, granulation tissue formation and fibrous capsule formation 6,15. 

The process by which atoms, molecules or ions in a fluid are retained on the surface of solids through 

chemical or physical interactions is known as adsorption. In the interface region, i.e., the place of 

interaction between the surface of the material and the biological environment in which it is installed, 

physical, chemical and biological mechanisms will direct the adsorption of proteins. The nature and 

amount of adsorbed proteins will directly influence the adhesion, migration and subsequent cell 

proliferation 4,16,17. Thus, in contact between the biomaterial and physiological fluids, the layer of 

adsorbed proteins will alter the implant surface to prepare it for future cell colonization 17,18. In 

summary, when a material is involved in the physiological environment, the adsorption of proteins 

on its surface is the first stage before cell adhesion (Figure1), which plays a key role in its 

biocompatibility 17,19,20. 
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The events that occur at the interface between biomaterial and living tissue only a few 

moments after implantation are of great importance for the successful performance of the biomaterial 

in the organism 15,19,21. The adsorption of non-specific proteins to a biomaterial occurs almost 

instantaneously after its implantation through a thermodynamically directed process to reduce the 

surface energy, and a monolayer of proteins can be seen within minutes 22,23. After the formation of 

a protein monolayer on the surface of the material, the cells can adhere and proliferate within a period 

of up to 24 hours. There are numerous proteins in the living organism and their competitive 

adsorption, denaturation on surfaces and participation in blood clotting will critically influence the 

biocompatibility and consequently the performance of the biomaterial 16.  

Inflammatory cells are able to recognize implanted materials as foreign by adsorbed proteins, 

thus initiating the cascade of events that lead to foreign body reaction 22, a process similar to 

opsonization. Therefore, plasma proteins play an important role in cell recruitment and tissue 

response to biomaterial implantation 18–20. It is important to consider that this process of protein 

adsorption by the surface of the biomaterial is inevitable and practically irreversible except under 

certain conditions, as in the Vroman effect, for example 24. In this phenomenon, observed by Vroman 

and Adams in 1969, a competitive protein exchange occurs on surfaces of the material, in which 

proteins already adsorbed from a protein mixture solution, are displaced by subsequently arriving 

proteins 23,25.  

It is considered that the adsorption of proteins is a dynamic process and influenced by several 

factors such as the type of non-covalent interaction that will occur (hydrophobic interactions, 

hydrogen bonds, electrostatic forces and Van der Waals forces). It is also influenced by the 

characteristics of the proteins (size and structure, which in turn, influence the type of interaction), 

besides the biomaterial itself (roughness, chemistry and surface energy) 17,23,26. According to 23 there 

Figure 1: Schematic of the interactions between cell and proteins adsorbed on the biomaterial surface. 
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are three major forces that determine the rate of protein adsorption on the surface of a biomaterial. 

They are, the difference in protein concentration between the liquid phase and the surface, the inherent 

affinity of the protein for the surface and the size of the protein (that is, its molecular weight). 

An example of how the surface of the biomaterial influences protein adsorption is the so-

called wettability. It is known that hydrophobic interaction plays a major role in protein adsorption 

phenomena. Protein adsorption is greater on a hydrophobic surface than on a hydrophilic one 2,26. 

Although protein adsorption is generally low on hydrophilic materials due to their low surface energy 

in aqueous environments, proteins, as has been reported, may still adsorb to hydrophilic materials 22. 

Examples of this phenomenon are observed with fibronectin, a protein that promotes cell adhesion, 

and fibrinogen, important for blood coagulation. Both are adsorbed in greater quantities on 

hydrophilic and hydrophobic surfaces 17,20,22. In the case of bone tissue, wettability can influence the 

first stage of osteoblast adhesion and the quality of osseointegration 17,20,27, since it is known that 

osteoblasts recognize and adhere to the adsorbed fibronectin on the surface of the implanted material 
17,20.  

Another characteristic of biomaterials that have an important influence on protein adsorption 

and consequent cellular adherence, especially in bone tissue, is the surface roughness 8,19,27. The 

nanoscale morphology of the implant surface shows evident advantages in inducing cell proliferation 

and differentiation, as well as good bone formation. 27. Many studies have shown that the increase in 

surface roughness in micro and nanoscale, exhibiting size characteristics comparable to those of the 

resorption pits and cellular dimensions, leads to a greater differentiation of osteoblasts and local 

production of factors in vitro.  In this way, there is an increase in bone implant contact in vivo leading 

to better clinical wound healing rates. The superficial roughness in nanometric scale, which 

corresponds directly to the sizes of proteins and cell membrane receptors, can also play an important 

role in the differentiation of osteoblasts and in the regeneration of injured tissues 19.  

An adhesive protein of particular interest in this field is fibrinogen, an important component 

of plasma, which is adsorbed to the surfaces of the biomaterial and thus participates in the acute 

inflammatory response to the implanted material 28,29. Their function in relation to biomaterials is due 

to the fact that proteins are surfactants, which means that they adsorb very quickly to foreign surfaces. 

Therefore, almost any biomaterial that comes in contact with biological fluids such as blood plasma 

or peritoneal fluids will cause a rapid adsorption of fibrinogen 29. Besides fibrinogen, other proteins 

can adsorb to the surface of biomaterials, such as vitronectin and fibronectin. These proteins and 

others involved in cellular adhesion are rich with the tripeptide sequence, Ar-Gly-Asp (RGD), which 

has been shown to bind to a number of integrins 28. In the bone tissue, the presence of RGD-related 

peptides on the implant surface accelerates the osseointegration process, as they serve as a signal and 
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transmit instructions to the cells, such as adhering to the surface, spreading, differentiating and inducing 

bone tissue formation 28,30,31. 

Plasma proteins, and also those present at the interstitial site of the implant, that are adsorbed 

on biomaterial, undergo changes in its structure, including denaturation on the implant surface, 

supporting subsequent cellular adhesion 3,16. In addition, platelets release chemotactic signals that 

stimulate cell migration. With respect to platelets, their adhesion on the implant surface is also 

influenced by the characteristics cited in the previous paragraphs 32–34. Authors 32, demonstrated that 

platelet adhesion on the surface of a biomaterial is directly related to its complexity, with more 

irregular surfaces favoring the adhesion of the same. Specifically, platelets activated by contact with 

a material surface may release cytokines that activate other cells, including other platelets, in the 

implant surface, modulating the degree of platelet activation 33. 

 

Macrophage Activation and Foreign Body Reaction (FBR) 

The implantation of a biomaterial within the body initiates in the host a series of immune 

reactions collectively called foreign body response (FBR), which try to eliminate and / or isolate the 

implanted material 14,35–37. Inflammatory cells are thought to recognize implanted materials as foreign 

through the adsorbed proteins, thus initiating a cascade of events that lead to the FBR 22. The most 

prominent cells in the FBR are macrophages, which attempt to phagocyte the material, though 

complete engulfment and degradation are often difficult. The macrophages, activated in the process 

of interacting with a biomaterial, may elaborate cytokines which stimulate inflammation or fibrosis 
35.  

As described above, after the implantation of a biomaterial, an influx of blood and interstitial 

fluid proteins creates a random protein coating on the surface of the biomaterial (blood-based 

provisional matrix) 15,38,39. This matrix is formed by fibrinogen, vitronectin, complement, and 

fibronectin. In response for these formation, platelet activation occurs with the constitution and 

proliferation of thrombus and activation of cells of the inflammatory response 39. Protein adsorption 

and chemotaxis of neutrophils and mast cells to the implant site direct the acute inflammatory phase. 

The formation of these provisional matrix can take from a few hours to days 14. The inflammatory 

cells interact with the adsorbed proteins and are activated. This process induces recruited 

macrophages to the implant site, as well as resident macrophages. In fact, although neutrophils arrive 

early, they are quickly replaced by macrophages, the orchestrators of FBR 40. Then, they begin to 

secrete chemotactic cytokines and other signaling molecules, which contribute to the development of 

FBR 15,28,38.  
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Adsorbed fibrinogen promotes adhesion of platelets and monocytes/macrophages, playing a 

key role in the foreign body reaction associated with biomaterial implants 29. It is important to mention 

the importance of Mac-1, a leukocyte integrin present in macrophages that binds to fibrinogen when 

it is adsorbed. This integrin is responsible for the direct adhesion of macrophages and their activation 

on the implant surface 28,29. Integrins are transmembrane receptors that act as bridges in cell-cell and 

matrix-cell interactions. This allows quick and flexible responses to events on the cell surface. Integrins 

contain two sub-units, α and β (Figure 1). During the process of attachment to any surface these subunits 

group together and recruit other cytoplasmic proteins 18. Then occurs the formation of a complex called 

"focal contact" or “focal adhesion” which measures cell adhesion and migration 11,18.  

Macrophages are activated while they are participating in local tissue responses including the 

FBR, wound healing, and certain diseases 41. The two best studied macrophage phenotypes are M1 

or classically activated and M2, or alternatively activated. Regarding the role played by each 

phenotipe, M1 macrophages are known to secrete pro-inflammatory cytokines such as IL-12, IL-23 

and tumour necrosis factor alpha (TNF-α) 38,42,43. M1 macrophages are critical for the initiation of 

angiogenesis and osteogenesis 44. M2 macrophages promote extracellular matrix synthesis and cell 

proliferation, being considered as an anti-inflammatory phenotype and pro-wound healing 14,38,42,43. 

M2 macrophages secrete large amounts of anti-inflammatory and pro-fibrotic cytokines such as IL-

10 and transforming growth factor (TGF-β) 38. In addition, the transition (balance) between the 

phenotypes M1 and M2 plays an important role in the formation and thickness of the fibrous capsule 

around implanted biomaterials 15. In normal tissue repair, macrophages exhibit a pro-inflammatory 

phenotype (M1) at early stages and a pro-healing phenotype (M2) at later stages 41–43. Macrophage 

polarization can be influenced by both wettability of the implant surface 38 and pore size in the case 

of porous implants 41. Many studies have linked the macrophage polarization with FBR outcome. It 

is well known that the FBR is a dynamic series of events, and macrophage polarization earlier and 

later, may play an important role on it 41,42.  

Macrophages can be found during the first weeks after the implantation of a biomaterial and 

in the final phase of the resorption process. This final step depends on the degradation time of the one 

in question 2,36,40. Macrophages are considered the main cellular mediators of FBR in biodegradable 

materials. They coordinate a complexity of cellular reactions, which integrate inflammatory 

cytokines, growth factors and complement components with various cell types, including other 

macrophages, neutrophils, lymphocytes, endothelial cells and fibroblasts 36–38. Macrophages are 

sensitive to minimal changes in the biological environment and set up a rapid response to implanted 

materials. They can also fuse under the influence of cytokines IL-4 and IL-13, released by mast cells 

(Figure 2), forming foreign body giant cells (FBGCs). Macrophages and FBGCs stimulate immune 
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(e.g., lymphocytes) and stromal cells (e.g., fibroblasts), leading to inflammation and fibrosis 

involving the implant 38,39,45. The macrophages activation is directly related to the development of 

FBR, since macrophages alternatively activated (M2) are responsible for the formation of the fibrous 

capsule and also of the BFGC 40. The intensity of this inflammatory reaction and fibrosis is related to 

many factors linked to the implant, as previously described 5,8,10. Changes in the roughness of the 

implant surface, in micrometric and nanometric scales, influence the orientation, adhesion, spreading 

and formation of the macrophage cytoskeleton and also the thickness of the fibrous capsule formed 

around the implant 15. Small particles are phagocyted by macrophages, large particles stimulate the 

formation of FBGC 38,45. 

 

 

FBGCs are considered a hallmark of FBR and can cause degradation of the implanted 

biomaterial, leading to its poor performance at the implantation site. Being more specific, FBGCs 

secrete reactive oxygen species, degradation enzymes, and create an acidic environment at the 

interface of the biomaterial. After these events, the formation of a collagenous and largely avascular 

capsule occurs, involving the biomaterial within 2 to 4 weeks after being implanted. Pro-fibrotic 

signals at the implant site are responsible for this phenomenon. The confinement of the material 

within this capsule prevents the actual integration of the implant with the surrounding tissue 3,37. The 

formation of this capsule is directly linked to the action of macrophages 2,3,39 and FBGCs that secrete 

pro-migratory molecules and TGF-β, which leads to the recruitment of fibroblasts that deposit 

extracellular matrix and encapsulate the implant. These foreign body capsules can reach a thickness 

of 50 to 200 µm and completely envelop the implant in a largely avascular space, which consists of 

dense and highly organized collagen fibers 3. The fibrous capsule formation is also related to several 

factors associated to the implant, such as its size, shape and texture, as well as its chemical properties, 

porosity, implant location, and chemical and physical stimuli caused by the implant 13,37,46. 

 

Implant Osseointegration 

Figure 2: Activation and migration of monocytes and the subsequent fusion of macrophages forming a 
giant foreign body cell 
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As described above, the biocompatibility of a material is closely related to the behavior of cells 

in contact with its surface, especially cell adhesion. Immediately after the insertion of the implant into 

the bone tissue, the cellular mechanisms that culminate in osseointegration are initiated. In this phase the 

characteristics of the implant surface have a great influence. The material's surface properties affect the 

adsorption of proteins and modulate cell proliferation and differentiation, influencing not only the 

osteoblast adhesion process but also the tissue response. Surface characteristics such as roughness, 

porosity, chemistry and energy significantly influence cell differentiation and, consequently, bone 

growth and osseointegration of the implant 1,8,11 because they play in important role in osteoblast 

adhesion on biomaterials 31.  

Osteoblasts adhere to implanted surfaces and to ECM (extracellular matrix) through adhesion 

molecules, as previously described 21,47. The cell-matrix adhesions mechanically connect the internal 

actin filaments to the matrix. The complex is known as a focal adhesion, focal plaque or focal contact 47. 

Focal adhesions mediate intracellular signaling pathways as they are directly linked to the cytoskeleton, 

thus influencing cellular behavior (Figure 3)  8,31. Therefore, fixation, adhesion and spreading are part of 

the first phase of cell/material interactions and the quality of this first phase will direct the cell's ability 

to proliferate and to differentiate itself in contact with the implant 31. This means that stable cell adhesion 

is essential for further proliferation and differentiation 48. 

 

 

 

The recruitment and migration of a population of potentially osteogenic cells is the first step 

to promote bone formation on the implant surface, then it is necessary to differentiate this population 

into mature secretory cells, i.e., osteoblasts. Osteogenic cells migrate through the blood clot formed 

at the site of the fracture or bone defect and reach the surface of the implant or the bone where it was 

Figure 3: Schematic diagram of osteoblastic cell adhesion process. (A) Integrins recognize RGD 
sequences and mediate the cell-biomaterial anchorage. Then, signs initiate the recruitment of cytoskeletal 
proteins resulting in the formation of focal adhesions. (B) Spreading: actin microfilaments and the 
cytoskeletal network rearrange and reshape cell morphology. 



111 

 

implanted. They then differentiate and form the new bone 17. In order to favor the mechanisms 

involved in bone formation around an implanted material, it is necessary that the implant has micro 

and nanotopographical characteristics that allow the connections of the extracellular matrix proteins 

with its surface. Studies show that both micrometric and nanometric characteristics influence cell 

adhesion, proliferation and osseointegration 7,18,27. Depending on the implant surface morphology, on 

the first day of implantation, mesenchymal cells, preosteoblasts and osteoblasts adhere to the implant 

surface 17.  

In recent decades, several studies have suggested that distinct micro and/or nanoscale 

structural characteristics that result from different surface modification techniques can play a 

significant role in influencing the behavior of target cells and thus define the quality of bone 

integration. Despite many pre-clinical in vitro and in vivo studies on the evaluation of new implant 

biomaterials, there is still scarce knowledge about the link between the specific characteristics of an 

implant surface and the cellular response that occurs at its interface with the surrounding tissue 8,21,48. 

Many authors stated  that osteoblastic cells adhere more rapidly on rough surfaces where there is 

more pronounced proliferation of extracellular matrix synthesis than on smooth surfaces 11,49,50.  

However, there is no consensus on this issue since cell behavior depends on the degree of roughness. 

These might explain differences in studies, as roughness parameters vary from one study to another 
51. In addition, there is no uniformity in the cell lines used in the experiments and cells with different 

phenotypes may show different responses to the surface of the materials 19,21,51. Studies show that 

changes in cell shape, which occur after its attachment to the surface of the biomaterial, are directly 

linked to its phenotypic characteristics. And these shape changes can alter cell metabolism, leading 

therefore to different results depending on the cell type used 47. 

Regarding the surface wettability of the implants, it was observed by 51 that hydrophilic 

surfaces were more likely to favor the adhesion of osteoblasts than fibroblasts. And according to 21, 

cells adhere more easily to hydrophilic surfaces. Authors 27 observed greater cellular adhesion in 

titanium implants as their surface wettability increased. As described above, wettability affects not 

only protein adsorption, but also platelet adhesion, thus influencing the subsequent phase, that is, the 

colonization of the implanted surface by osteogenitor cells 34.  

After adhesion and migration, cells divide and proliferate across the surface. They further 

differentiate which means that they synthesize the molecules they normally synthesize in their tissue of 

origin. Osteoblasts will synthesize collagen and the other proteins (non-collagenous proteins) normally 

found in bone tissue 21. Most of these (especially fibronectins, osteopontines, bone sialoproteins, type I 

collagen, vitronectins) are involved in the process of cell adhesion and chemotaxis 52,53 due to the RGD 

sequence  present in its molecules 28,30,52. Fibronectin and vitronectin adsorption are important in 
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osseointegration since they induce the reorganization of actin microfilaments promoting adhesion and 

scattering, which in turn affects cell morphology and migration 30,52. In addition, osteoblasts recognize 

and adhere to the adsorbed fibronectin on the surface of the biomaterial 30,53.  

Adhesion molecules are characterized by the ability to interact with specific binders, which may 

be located in the membrane of neighboring cells or be proteins in the extracellular matrix. These adhesion 

molecules belong to different families. However, in relation to osteoblasts, the most important are 

integrins 11,18,30. After binding to specific sites within the extracellular matrix proteins, especially to the 

sequence of RGD trypeptides, integrins quickly associate with the cytoskeleton modifying it to form 

focal adhesions (Figure 3). This interaction of integrins with the extracellular matrix proteins is necessary 

for the gene expression of osteoblasts. Together with growth factor receptors, focal adhesions signal 

pathways for cell proliferation 30,53. Both the chemical composition of the material and its topography 

influence the interaction of integrins with the substrate and integrins with cellular behavior 11,18,49. Cell 

migration requires an integration between cell, substrate and cytoskeleton. First, the cells develop a 

protrusion forming the lamellipod and then use the adhesive interactions to generate traction and energy 

for movement. Finally, the release of the adhesion points occurs, followed by the detachment and 

retraction 18. 

 Not only osteoblasts, but also osteoclasts play a role in bone healing, development and 

remodeling and their complementary activities are important in bone-biomaterial interaction 11,54.  For 

many applications, it would be beneficial to identify the surface characteristics that would be ideal to 

promote bone formation by osteoblasts, suppressing the resorptive activity of osteoclasts. If the 

biomaterial is to be used as a synthetic bone substitute, then the degradation rate should be comparable 

to bone. However, if the intended application is a permanent implant, then the resorption rate should be 

minimized 11. An ideal, bioactive material for bone substitution should be able to be resorbed and 

replaced by new bone, before having its stability compromised. In other words, the ideal bone 

substitution material should be osteoinductive, osteoconductive and only stay in the body as long as 

necessary to replace the defect by newly formed bone 55. Therefore, considering the importance of 

osteoclasts for bone remodeling and for responses triggered by trauma or functional demands, the 

understanding of the mutual interactions of osteoblasts, osteocytes, osteoclasts and biomaterials is of 

great interest 54.   

The reabsorption of bone and mineral substrates depends on the formation of a transient 

resorption complex, which is composed of actin rings and a ruffled plasma membrane 56. This ring is 

associated with a “sealing zone”, that constitutes the place where the osteoclasts firmly adhere to the 

bone forming a diffusion barrier, which in turn establishes a resorption compartment in which proteolytic 

enzymes are secreted 54,56. In the case of synthetic apatite biomaterials, acidification of this compartment 
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causes mineral dissolution and formation of a resorption pit. Therefore, the resorption of ceramic 

materials by osteoclastic activity occurs similarly to bone resorption 11,54. Authors 11 observed that 

surface topography also affects the activity of osteoclasts, and more activity is observed on smoother 

surfaces. In their study they also observed that the topography affects the capacity of the osteoclasts to 

resorb hydroxyapatite, since they did not observe osteoclastic resorption pits in the rougher material. 

Apparently, the smoother surface is a facilitator of the connection of these cells with the biomaterial.  

Authors 57 observed osteoclasts and FBGCs in close proximity during foreign body reactions. 

According to the authors 58 FBGCs may resorb bone substitutes in collaboration with osteoclasts 

during the process of involvement into bone. In accordance to the authors, when biodegradable 

implants are implanted in bone defects, their degradation and osteogenesis occur simultaneously, and 

FBGCs and / or osteoclasts can contribute to the replacement of implants by bone. Unlike FBGCs, 

osteoclasts are physiologically essential for bone metabolism and even if there is no pathological 

stimulation of osteoclastic activity, which is usually induced by inflammation, osteoclasts can 

contribute to the regeneration of bone defects that received biodegradable implants. 

A relevant factor in the osseointegration of an implant is the ability of the material to provide 

a sufficient supply of nutrients and oxygen to the implant site 42,59. This means that ideally, the implant 

should be able to promote blood vessel ingrowth from the surrounding host tissue, connecting the 

scaffold to the host vasculature 42. Vascularization is crucial for the development and the repair of 

most tissues, and is a precondition for the healing of bone defects. A functional vascularization is 

necessary for bone formation and the substitution of biomaterials with osseous tissue 59. The growth 

of new blood vessels is critical not only to stimulate osteogenesis, but also to support cell viability 
42,60. In developing bone, differentiation of mesenchymal stromal cells (MSCs) into osteoblasts is 

coupled with the invasion of capillaries, and the capillary network serves as a template for the bone 

ingrowth 42,61. The natural inflammatory response to injury or to an implanted biomaterial determines 

the course of angiogenesis, healing, and repair 2,42.  

 It is well known that porous bone substitutes permit vessel ingrowth and thus facilitate 

osteogenesis 1,60,61. Several studies have been performed in order to evaluate the pore size influence 

on bone and blood vessels ingrowth through porous biomaterials. Authors 59 observed, in their study 

using a porous, biphasic calcium phosphate ceramics, that the onset of blood-vessel formation 

occurred after a shorter time period, and the functional capillary density (FCD) was higher in 

association with ceramics whose pore sizes exceeded 140 µm than with either those whose pore sizes 

were smaller than 140 µm or dense particles. They conclude that the observed differences in 

angiogenesis and vascularization were a function of pore size. The minimum pore size that is required 
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to generate mineralized bone is considered to be 50 µm 1,59. As previously exposed, larger pores are 

better for vascular growth and bone formation, however they compromise mechanical stability 1,5,59. 

  

Conclusion:  

The ideal biomaterial should provide a biomimetic environment to ensure cell survival and 

also direct cell migration in order to that relevant cells migrate and adhere to the implant, thus 

ensuring its effectiveness. The type of cellular and tissue response to implanted biomaterials is 

dependent on their features. The main characteristics that influence the success of a biomaterial after its 

implantation are related to the surface that comes into contact with the tissues, such as topography 

(roughness), wettability and surface chemistry. These characteristics will guide the protein adsorption 

and the inflammatory response related to the implant. For biomaterials implanted in bone, the most 

important features influencing implant osseointegration and osteoconduction are surface roughness, 

wettability and porosity. Thus, the manipulation of the surface characteristics of implants has been 

increasingly the target of research, with the aim of improving to the maximum the performance of 

biomaterials in the various tissues in which they are used. 
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