ANÁLISE IN VITRO DE FRAÇÕES CROMATOGRÁFICAS ISOLADAS DE PSEUDOMONAS AERUGINOSA SOBRE A DEGRADAÇÃO DE NAFTALENO

  • Dagna Karen Oliveira Universidade Federal do Paraná
  • Anderson Dillmann Groto Campus Toledo, Universidade Federal do Paraná (UFPR), Toledo (PR), Brasil.
  • Leandro Antônio Alves Centro Universitário de Patos de Minas, UNIPAM, Patos de Minas, MG, Brasil
  • Lucca Miketen de Oliveira Universidade Federal do Paraná, UFPR - Campus Toledo, Toledo, PR, Brasil
  • Queren Hapuque Oliveira Alencar1 Universidade Federal do Paraná, UFPR - Campus Toledo, Toledo, PR, Brasil
  • Kádima Nayara Teixeira Universidade Federal do Paraná, UFPR - Campus Toledo, Toledo, PR, Brasil
Palavras-chave: Biodegradação Ambiental; Cromatografia; Hidrocarbonetos Policíclicos Aromáticos; Pseudomonas aeruginosa.

Resumo

Os hidrocarbonetos policíclicos aromáticos (HPA) são compostos tóxicos aos seres humanos que podem se acumular no ambiente. Pseudomonas é um gênero que compreende bactérias que utilizam preferencialmente, como fonte de carbono os HPA. Neste trabalho, a expressão de enzimas da via de degradação de naftaleno foi induzida em P. aeruginosa, que é comumente encontrada em solos brasileiros, e cujo potencial biorremediador ainda não foi explorado. As frações cromatográficas obtidas foram testadas quanto à degradação do HPA naftaleno, in vitro. Algumas das frações se mostraram capazes de realizar a catálise, indicando a presença das enzimas responsáveis pelo processo e apontando um potencial do uso das mesmas, fora do micro-ambiente bacteriano.

Referências

1. Bernardo; Douglas L. et al. Carcinogenicidade de hidrocarbonetos policíclicos aromáticos. Quím. Nova , São Paulo. agosto de 2016. (acessado em 20 de julho de 2020); 39(7):789-794. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-40422016000700789&lng =en& nrm=iso. doi: http://dx.doi.org/10.5935/0100-4042.20160093.
2. GERESLASSIE, Tekleweini et al. Occurrence and Ecological and Human Health Risk Assessment of Polycyclic Aromatic Hydrocarbons in Soils from Wuhan, Central China. International Journal Of Environmental Research And Public Health, v. 15, n. 12, p.1-19, 5 dez. 2018.
3. Khatoon K, Malik A. Screening of polycyclic aromatic hydrocarbon degrading bacterial isolates from oil refinery wastewater and detection of conjugative plasmids in polycyclic aromatic hydrocarbon tolerant and multi-metal resistant bacteria. Heliyon. 2019 Oct; 5(10):e02742. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838955/
doi:10.1016/j.heliyon.2019.e02742
4. Sicre MA, Marty JC, Saliot A, Aparicio X, Grimalt J, Albaiges J. Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin. Atmospheric Environment. 1987; 21(10): 2247–2259. doi: 10.1080/03067318708078412
5. Neff JM. Polycyclic aromatic hydrocarbons in the aquatic environment: sources, fates and biological effects. Applied Science Publishers Ltd., Essex: England; 1979. p. 262
6. Volkering F, Breure AM, Van Andel JG. Microbial degradation of polycyclic aromatic hydrocarbons: effect of substrate availability on bacterial growth kinetics. Appl. Microbiol. Biotechnol. 1992; 36: 548–552. doi:https://doi.org/10.1007/BF00170201
7. Volkering F, Breure AM, Van Andel JG. Effect of microorganisms on the bioavailability and biodegradation of crystalline naphthalene. Appl. Microbiol. Biotechnol.1993; 40: 535–540 doi: 10.1007/BF00175745
8. Bosma TNP, Middeldorp PJM, Schra AG, Zender AJB. Mass transfer limitation of biotransformation: quantifying bioavailability. Environ Sci Technol. 1997; 31: 248–252. doi:https://doi.org/10.1021/es960383u
9. Francisco WC, Queiroz TM de. Biorremedição.[Internet].(2018).[Acesso em: 08 jun. 2020.];
15(1):249-255. Disponível em: http://nucleus.feituverava.com.br/index.php/nucleus/article/view/1700. doi: https://doi.org/10.3738/1982.2278.1700
10. Rosato YB. Biodegradação do Petróleo. 1997. In: Melo, I.S e Azevedo, J.L. Microbiologia Ambiental. Jaguariúna. Empresa Brasileira de Pesquisa Agropecuária. 14: 307-334.
11. Annweiler E, Richnow H, Antranikian G, Hebenbrock S, Garms C, Franke S,et al. Naphthalene degradation and incorporation of naphthalene derived carbon into biomass by the thermophile Bacillus thermoleovorans. Appl Environ Microbiol. 2000 Feb; 66(2):518–523. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC91857/. doi: 10.1128/aem.66.2.518-523.2000
12. Resnick SM, Lee K, Gibson DT. Diverse reactions catalyzed by naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816. J. Ind. Microbiol. Biotechnol. 1996; 17: 438–457.
13. Menn FM, Applegate BM, Sayler GS. NAH Plasmid mediated catabolism of anthracene and phenanthrenen to naphthoic acids. Appl. Environ. Microbiol. 1993; 59(6): 1938–1942. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC182186/
14. Kiyohara H, Torigoe S, Kaida N, Asaki T, Ilda T, Hayashi H, et al. Cloning and characterization of a chromosomal gene cluster, pah, that encodes the upper pathway for phenanthrene and naphthalene utilization by Pseudomonas putida OUS82. J. Bacteriol. 1994 Apr; 176(8): 2439–2443.
Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC205370/. doi: 10.1128/jb.176.8.2439-2443.1994
15. Pinyakong O, Habe H, Kouzuma A, Nojiri H, Yamane H, Omori T. Isolation and characterization of genes encoding polycyclic aromatic hydrocarbon dioxygenase from acenaphthene and acenaphthylene degrading Sphingomonas sp. FEMS Microbiol. Lett.; 2004. p.297–305, Disponível em: https://academic.oup.com/femsle/article/238/2/297/490344
doi: 10.1016/j.femsle.2004.07.048
16. Frescura LM, Pereira HE, Silva Jr FV, Menezes BB, Hilgemman M, Lazzaretti Jr AP, et al. A Comparative Study Between High Density Polyethylene, Polyurethane Foam and Amberlite XAD-2 in the Removal of Different PAHs. Journal Polycyclic Aromatic Compounds. 25 Aug 2018; 0(0):1-15. Disponível em: https://www.researchgate.net/publication/329922973_A_Comparative_Study_Between_High_Density_Polyethylene_Polyurethane_Foam_and_Amberlite_XAD-2_in_the_Removal_of_Different_PAHs
.doi:https://doi.org/10.1080/10406638.2018.1545680
17. Top EM, Spingael D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr. Opin. Biotechnol. 2003; 14(3):262–269. doi:https://doi.org/10.1016/S0958-1669(03)00066-1
18. Tortora GJ, Case CL, Funke BR. Microbiologia. 12 ed. Porto Alegre: Artmed Editora; 2016.
19. Eaton RW, Chapman PJ. Bacterial metabolism of naphthalene: construction and use of recombinant bacteria to study ring cleavage of 1,2-dihydroxynaphthalene and subsequent reactions. J Bacteriol. 1992; 174(23), 7542-7554. Diponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC207464/. doi: 10.1128/jb.174.23.7542-7554.1992.
20. Habe H, Omori T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Bioscience, biotechnology, and biochemistry. 22 May 2014; 67(2): 225-243.
Disponível em: https://www.jstage.jst.go.jp/article/bbb/67/2/67_2_225/_pdf/-char/en.
doi: https://doi.org/10.1271/bbb.67.225
21. Sun S, Wang Y, Zang T, et al. A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons. Bioresour Technol. 2019; 281:421-428. doi:10.1016/j.biortech.2019.02.087
22. Lofthus S, Bakkea I, Tremblay J, Greerc CW, Brakstadb OG. Biodegradation of weathered crude oil in seawater with frazil ice. Marine Pollution Bulletin. May 2020; 154:111090.
Disponível em: https://www.sciencedirect.com/science/article/pii/S0025326X20302083. doi: https://doi.org/10.1016/j.marpolbul.2020.111090
23. Kim KH, Jahan SA, Kabir E, Brown, RJ. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int. 2013 Oct; 60: 71-80. doi:10.1016/j.envint.2013.07.019
24. Yan S, Wu G. Reorganization of gene network for degradation of polycyclic aromatic hydrocarbons (PAHs) in Pseudomonas aeruginosa PAO1 under several conditions. J Appl Genet. 2017; 58(4):545-563.
Disponível em: https://link.springer.com/article/10.1007/s13353-017-0402-9
doi:10.1007/s13353-017-0402-9
25. Alcalde M, Ferrer M, Plou FJ, Ballesteros A. Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol. 2006; 24(6):281-287. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0167779906000990. doi:10.1016/j.tibtech.2006.04.002.
Publicado
2020-10-15
Seção
Meio Ambiente