HERBICIDA GLIFOSATO INDUZ INFLAMAÇÃO EM ANIMAIS EXPOSTOS: UMA REVISÃO INTEGRATIVA

  • Eduardo Bortolon Ribas Universidade Alto Vale do Rio do Peixe
  • Claudriana Locatelli Universidade Alto Vale do Rio do Peixe
Palavras-chave: glifosato, inflamação, citocina.

Resumo

O objetivo proposto desta revisão integrativa foi sintetizar os estudos diante do conhecimento científico já produzido e disponível na literatura sobre os efeitos inflamatórios induzidos pelo glifosato. Sendo realizada uma busca nas bases de dados da BVS, PubMed e Portal Capes, entre o período de janeiro de 2011 a novembro de 2021, com 234 estudos achados e 11 selecionados. Destes 11 estudos 90,91% (10 artigos) foram publicados nos últimos 5 anos e 63,63% (7 artigos) dos animais utilizados para a pesquisa foram ratos e, com 36,36% (4 artigos) dos estudos, tendo o fígado como o órgão mais analisado. As análises teciduais, celulares e de expressão de genes diante dos processos inflamatórios e alterações nos níveis de citocinas indicam uma atuação nociva da exposição do glifosato e seus compostos comerciais sendo necessário uma investigação mais aprofundada do efeito do glifosato em animais, humanos e no ambiente para uma regulamentação mais eficaz e um manejo mais seguro.

Biografia do Autor

Eduardo Bortolon Ribas, Universidade Alto Vale do Rio do Peixe

Biólogo, Mestrando do Programa de Pós Graduação em Desenvolvimento e Sociedade da UNIARP

Referências

1. Zhan H, Feng Y, Fan X, Chen S. Recent advances in glyphosate biodegradation. Applied Microbiology and Biotechnology. 2018;102(12):5033-5043.

2. Mesnage R, Defarge N, Vendômois JS, Seralini GE. Potential toxic effects of glyphosate and its comercial formulation below regulatory limits. Food and Chemical Toxicology. 2015a;84:133-153.

3. Chang ET, Delzell E. Systematic review and meta-analysis of glyphosate exposure and risk of lymphohematopoietic cancers. Journal of Environmental Science and Health. 2016;51(6):402-428.

4. Benbrook CM. Trends in glyphosate herbicide use in the United States and globally. Environmental Sciences Europe. 2016;28(3).

5. Ibama – Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis. Relatório de Comercialização de Agrotóxicos. 2019. Disponível em: . Acesso em: 08 de nov. 2021.

6. Mesnage R, Defarge N, Vendômois JS, Séralini GE. Major pesticides are more toxic to human cells than there declared active principles. Biomed Research International. 2014:1-8.

7. Gasnier C, Dumont C, Benachour N, Clair É, Chagnon MC, Séralini GE. Glyphosate-based herbicides are toxic and endocrine disruptors in human cell lines. Toxicology. 2009;262(3):184-191.

8. Clair É, Mesnage R, Travert C, Séralini GE. A glyphosate-based herbicide induces necrosis and apoptosis in mature rat testicular cells in vitro, and testosterone decrease at lower levels. Toxicology In Vitro. 2012;26(2):269-279.

9. Mink PJ, Mandel JS, Sceurman BK, Lundin JL. Epidemiologic studies of glyphosate na cancer: a review. Regulatory Toxicology and Pharmacology. 2012;63(3):440-452.

10. Reece JB, Urry LA, Cain ML. Steven AW, Minorsky PV, Jackson RB. Biologia de Campbell. 10. ed. Porto Alegre: Artmed, 2015.

11. Murphy K. Imunobiologia de Janeway. 8. ed. Porto Alegre: Artmed, 2014.

12. Forner-piquer I, Faucherre A, Byram J, Blaquiere M, Bock F, Gamet-payrastre L, et al. Differential impact of dose-range glyphosate on locomotor behavior, neuronal activity, glio-cerebrovascular structures, and transcript regulations in zebrafish larvae. Chemosphere. 2021;267.

13. Liu J, Dong C, Zhai Z, Tang L, Wang L. Glyphosate-induced lipid metabolism disorder contributes to hepatotoxicity in juvenile common carp. Environmental Pollution 2021;269.

14. Pandher U, Kirychuk S, Schneberger D, Thompson B, Aulakh G, Sethi RS, et al. Pulmonary inflammatory response from co-exposure to LPS and glyphosate. Environmental Toxicology and Pharmacology. 2021;86.

15. Zhang L, Ding F, Wang R, Wu X, Wan Y, Hu J, et al. Involvement of mitochondrial fission in renal tubular pyroptosis in mice exposed to high and environmental levels of glyphosate combined with hard water. Environmental Pollution, 2021;283.

16. Zheng T, Jia R, Cao L, Du J, Gu Z, He Q, et al. Effects of chronic glyphosate exposure on antioxdative status, metabolism and imune response in tilapia (GIFT, Oreochromis niloticus). Comparative Biochemestry Part C: Toxicology and Pharmacology. 2021;239.

17. Hamdaoui L, Oudadesse H, Lefeuvre B, Mahmoud A, Naifer M, Badraoui R, et al. Sub-chronic exposure to Kalach 360 SL©, glyphoste-based herbicide, induced bone rarefaction in female Wistar rats. Toxicology. 2020;436.

18. Suppa A, Kvist J, Li X, Dhanpani V, Almulla H, Tian AY, et al. Roundup causes embryonic development failure and alters metabolic pathways and gut microbiota functionality in non-target species. Microbiome. 2020;8(1).

19. Pandey A, Dhabade P, Kumarasamy A. Inflammatory effects of subacute exposure of Roundup© in rat liver and adipose tissue. Dose-Response. 2019;17(2):1-11.

20. Souza JS, Laureano-melo R, Herai RH, Conceição RR, Oliveira KC, Silva IDCG, et al. Maternal glyphosate-based herbicide exposure alters antioxidante-related genes in the brain and serum metabolites of male rat offspring. Neurotoxicology. 2019;74:21-131.

21. Reus V, Huespe I, Contini MC, Cabagna MRC, Jauregui S, Andres D, et al. Efectos de um herbicida as base de glifosato sobre la generación de alteraciones metabólicas sistêmicas y câmbios histológicos hepáticos en un modelo animal de insulinorresistencia. Revista de la Sociedad Argentina de Diabetes. 2016;50(1).

22. Kumar S, Khodoun M, Kettleson EM, Mcknight C, Reponen T, Grinshpun AS, et al. Glyphosate-rich air samples induce IL-33, TSLP, and generate IL-13 dependent airway inflammation. Toxicology. 2014;325:42-51.

23. Harris SG, Padilla J, Koumas L, Ray D, Phipps RP. Prostaglandis as modulators of immunity. Trends in Immunology. 2002;23(3):144-150.

24. Theoharides TC, Angelidou A, Alysandratos KD, Zhang B, Asadi S, Francis K, et al. Mast cell activation and autismo. Biochimica et Biophysica Acta. 2012;1822(1):34-41

25. Hernández AF, González-alzaga B, López-flores I, Lacasaña M. Systematic disorders linked to pesticide exposure: methodological features and impact on risk assessment. Environment International. 2016;92-93:657-679.

26. Roberts JR, Dawley EH, Reigart JR. Children’s low-level pesticide exposure and association with autismo and ADHD: a review. Pediatric Reserch. 2019;85:234-241.

27. Von Ehrenstein OS, Ling C, Cui X, Cockburn M, Park AS, Yu F, et al. Prenatal and infant exposure to ambiente pesticides and autism spectrum disorder in children: population based case-control study. BMJ. 2019;365.

28. Ongono JS, Béranger R, Baghdali A, Mortamais M. Pesticides used in Europe na autismo spectrum disorder risk: can novel exposure hypotheses be formulated beyond organophosphates, organochlorines, pyrethroids and carbamates? – a systematic review. Environmental Research. 2020;187.

29. Anderson N, Borlak J. Molecular mechanisms and therapeutic targets in steatosis na steatohepatitis. Pharmacological Reviews. 2008;60(3):311-357.

30. Shiogiri NS, Paulino MG, Carraschi SP, Baraldi FG, Cruz C, Fernandes MN. Acute exposure of a glyphosate-based herbicide effects the gills and liver of the neotropical fish, Piaractus mesopotamicus. Environmental Toxicology and Pharmacology. 2012;34(2):388-396.

31. Dos Santos APR, Rocha TL, Borges CL, Bailão AM, Soares CMA, De Sabóia-Moraes SMT. A glyphosate-base herbicide induces histomorphological and protein expressio Changes in the liver of the female guppy Poecilia reticulata. Chemosphere. 2017;168:933-943.

32. Liu SF, Malik AB. NF-κB activation as a pathological mechanism of septic shock and inflammation. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2006;290(4):L622-L645.

33. Mesnage R, Arno M, Costanzo M, Malatesta M, Séralini GE, Antonious MN. Transcriptome profile Analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup© exposure. Environmental Health. 2015b;14(1).

34. Gao H, Chen J, Ding F, Chou X, Zhang X, Wan Y, et al. Activation of the N-methyl-d-aspartate receptor is involved in glyphosate-induced renal proximal tubule cell apoptosis. Journal of Applied Toxicology. 2019;39(8):1096-1107.

35. Turkmen R, Birdane YO, Demirel HH, Yavuz H, Kabu M, Ince S. Antioxidant and cytoprotective effects of N-acetylcysteine against subchronic oral glyphosate-based herbicide-induced oxidative stress in rats. Environmental Science and Pollution Research. 2019.

36. Jha V, Garcia-garcia G, Iseki K, Li Z, Naicker S, Plattner B, et al. Chronic kidney disease: global dimension and perspectives. The Lancet. 2013;382(9888):260-272.

37. Wang F, Yang C, Long J, Zhao X, Tang W, Zhang D, et al. Executive summary for the 2015 annual data report of the China kidney disease network (CK-NET). Kidney International. 2019;95(3):501-505.
Publicado
2022-07-23