INTERAÇÕES CELULARES COM SUPERFÍCIES IMPLANTADAS NO ORGANISMO VIVO E OSTEOINTEGRAÇÃO DE IMPLANTES

  • Cristiane Vital Cintra Universidade Federal de Viçosa
  • Rodrigo Viana Sepúlveda
  • Fabrício Luciani Valente
  • Emily Correna Carlo Reis
  • Andréa Pacheco Batista Borges

Resumo

A superfície de um biomaterial é uma plataforma para migração e crescimento celular. Todo biomaterial, quando implantado in vivo, causa respostas celulares e teciduais. Estas incluem reações inflamatórias e de corpo estranho, resposta de cicatrização de feridas e formação de cápsula fibrosa em algum grau ao redor do implante. O crescimento tecidual na interface de uma estrutura implantada é um fenômeno complexo que envolve uma variedade de fatores, alguns deles relacionados ao biomaterial e incluem sua microarquitetura, propriedades mecânicas do material de base, topografia e rugosidade, ambos em escala micrométrica e macrométrica. Em relação ao tecido ósseo especificamente, uma estrutura com poros interligados é fundamental para mimetizar a matriz óssea extracelular. O tamanho dos poros, a porosidade e a interconectividade entre eles determina o desempenho do material em funções tais como fixação celular e difusão de nutrientes. Características da superfície do implante, tais como rugosidade e porosidade influenciam significativamente a diferenciação celular e consequentemente o crescimento ósseo e a osseointegração. O foco deste artigo de revisão é a interação de proteínas com a superfície dos biomateriais implantados e a consequente ativação dos macrófagos e desenvolvimento de reação de corpo estranho. Além disso, descrevemos os mecanismos relacionados à osseointegração dos implantes.

Referências

1. Arabnejad S, Burnett Johnston R, Pura JA, Singh B, Tanzer M, Pasini D. High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints. Acta Biomater [Internet]. 2016;30:345–56. Available from: http://dx.doi.org/10.1016/j.actbio.2015.10.048
2. Gretzer C, Emanuelsson L, Liljensten E, Thomsen P. The inflammatory cell influx and cytokines changes during transition from acute inflammation to fibrous repair around implanted materials. J Biomater Sci Polym Ed [Internet]. 2006;17(6):669–87. Available from: http://dx.doi.org/10.1163/156856206777346340
3. Moore LB, Kyriakides TR. Molecular Characterization of Macrophage-Biomaterial Interactions. Adv Exp Med Biol [Internet]. 2015;865:109–22. Available from: http://link.springer.com/10.1007/978-3-319-18603-0_6%0Ahttp://link.springer.com/10.1007/978-3-319-18603-0%0Ahttp://www.nature.com/doifinder/10.1038/nri1461
4. Gui N, Xu W, Myers DE, Shukla R, Tang HP, Qian M. The effect of ordered and partially ordered surface topography on bone cell responses: A review. Biomater Sci. 2018;6(2):250–64.
5. Kadkhodapour J, Montazerian H, Darabi AC, Anaraki AP, Ahmadi SM, Zadpoor AA, et al. Failure mechanisms of additively manufactured porous biomaterials: Effects of porosity and type of unit cell. J Mech Behav Biomed Mater. 2015;50:180–91.
6. Veiseh O, Doloff JC, Ma M, Vegas AJ, Tam HH, Bader AR, et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat Mater. 2015;14(6):643–51.
7. Reis ECC, Borges APB, Oliveira PM, Bicalho SMCM, Reis AM, Da Silva CL. Desenvolvimento e Caracterização de Membranas Rígidas, Osteocondutoras e Reabsorvíveis de Polihidroxibutirato e Hidroxiapatita para Regeneração Periodontal. Polimeros. 2012;22(1):73–9.
8. Lee MS, Lee DH, Jeon J, Oh SH, Yang HS. Topographically Defined, Biodegradable Nanopatterned Patches to Regulate Cell Fate and Acceleration of Bone Regeneration. ACS Appl Mater Interfaces. 2018;10(45):38780–90.
9. Carlo EC, Borges APB, Del Carlo RJ, Martinez MMM, Oliveira PM, Morato GO, et al. Comparison of in vivo properties of hydroxyapatite-polyhydroxybutyrate composites assessed for bone substitution. J Craniofac Surg. 2009;20(3):853–9.
10. Kim CS, Jung KH, Kim H, Kim CB, Kang IK. Collagen-grafted porous HDPE/PEAA scaffolds for bone reconstruction. Biomater Res [Internet]. 2016;20(1):1–9. Available from: http://dx.doi.org/10.1186/s40824-016-0071-5
11. Costa DO, Prowse PDH, Chrones T, Sims SM, Hamilton DW, Rizkalla AS, et al. The differential regulation of osteoblast and osteoclast activity bysurface topography of hydroxyapatite coatings. Biomaterials [Internet]. 2013;34(30):7215–26. Available from: http://dx.doi.org/10.1016/j.biomaterials.2013.06.014
12. Zhang Q, Dong H, Li Y, Zhu Y, Zeng L, Gao H, et al. Microgrooved Polymer Substrates Promote Collective Cell Migration to Accelerate Fracture Healing in an in Vitro Model. ACS Appl Mater Interfaces. 2015;7(41):23336–45.
13. Carlo EC, Borges APB, Rezende CM de F, Moreira J do CL, Fonseca CC, Pontes KCS, et al. Avaliação Do Efeito Osteoindutor Da Hidroxiapatita E Do Biovidro Implantados Em Tecido Subcutâneo De Cão. Rev Ceres. 2007;54(316):492–500.
14. Rahmati M, Silva EA, Reseland JE, A. Heyward C, Haugen HJ. Biological responses to physicochemical properties of biomaterial surface. Chem Soc Rev. 2020;49(15):5178–224.
15. Hachim D, LoPresti ST, Yates CC, Brown BN. Shifts in macrophage phenotype at the biomaterial interface via IL-4 eluting coatings are associated with improved implant integration. Biomaterials. 2017;112:95–107.
16. Zdolsek J, Eaton JW, Tang L. Histamine release and fibrinogen adsorption mediate acute inflammatory responses to biomaterial implants in humans. J Transl Med. 2007;5:1–6.
17. Kopf BS, Ruch S, Berner S, Spencer ND, Maniura-Weber K. The role of nanostructures and hydrophilicity in osseointegration: In-vitro protein-adsorption and blood-interaction studies. J Biomed Mater Res - Part A. 2015;103(8):2661–72.
18. Rahman ZU, Haider W, Pompa L, Deen KM. Electrochemical & osteoblast adhesion study of engineered TiO2 nanotubular surfaces on titanium alloys. Mater Sci Eng C. 2016;58:160–8.
19. Gittens RA, McLachlan T, Cai Y, Berner S, Tannenbaum R, Schwartz Z, et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials. 2012;32(13):3395–403.
20. Lin M, Wang H, Ruan C, Xing J, Wang J, Li Y, et al. Adsorption Force of Fibronectin on Various Surface Chemistries and Its Vital Role in Osteoblast Adhesion. Biomacromolecules. 2015;16(3):973–84.
21. Anselme K, Ponche A, Bigerelle M. Relative influence of surface topography and surface chemistry on cell response to bone implant materials. Part 2: Biological aspects. Proc Inst Mech Eng Part H J Eng Med. 2010;224(12):1487–507.
22. Swartzlander MD, Barnes CA, Blakney AK, Kaar JL, Kyriakides TR, Bryant SJ. Linking the foreign body response and protein adsorption to PEG-based hydrogels using proteomics. Biomaterials. 2015;41:26–36.
23. Kim J. Systematic approach to characterize the dynamics of protein adsorption on the surface of biomaterials using proteomics. Colloids Surfaces B Biointerfaces [Internet]. 2020;188(December 2019):110756. Available from: https://doi.org/10.1016/j.colsurfb.2019.110756
24. Penna MJ, Mijajlovic M, Biggs MJ. Molecular-level understanding of protein adsorption at the interface between water and a strongly interacting uncharged solid surface. J Am Chem Soc. 2014;136(14):5323–31.
25. Hirsh SL, McKenzie DR, Nosworthy NJ, Denman JA, Sezerman OU, Bilek MMM. The Vroman effect: Competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surfaces B Biointerfaces. 2013;103:395–404.
26. Kim J, Yoon J-Y. Protein adsorption on polymer particles. J Biomed Mater Res [Internet]. 2002;21(2):4373–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/3818679
27. Kang Y, Ren X, Yuan X, Ma L, Xie Y, Bian Z, et al. The effects of combined micron-scale surface and different nanoscale features on cell response. Adv Mater Sci Eng. 2018;2018.
28. Zaveri TD, Lewis JS, Dolgova N V., Clare-Salzler MJ, Keselowsky BG. Integrin-Directed Modulation of Macrophage Responses to Biomaterials. Biomaterials. 2014;35(11):3504–15.
29. Horbett TA. Fibrinogen adsorption to biomaterials. J Biomed Mater Res - Part A. 2018;106(10):2777–88.
30. Rivera-Chacon DM, Alvarado-Velez M, Acevedo-Morantes CY, Singh SP, Gultepe E, Nagesha D, et al. Fibronectin and vitronectin promote human fetal osteoblast cell attachment and proliferation on nanoporous titanium surfaces. J Biomed Nanotechnol. 2013;9(6):1092–7.
31. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials. 2000;21(7):667–81.
32. Kikuchi L, Park JY, Victor C, Davies JE. Platelet interactions with calcium-phosphate-coated surfaces. Biomaterials. 2005;26(26):5285–95.
33. Park JY, Gemmell CH, Davies JE. Platelet interactions with titanium: modulation of platelet activity by surface topography. Biomaterials [Internet]. 2001;22:2671–82. Available from: http://www.sciencedirect.com/science/article/pii/S0142961201000096%5Cnpapers2://publication/uuid/5B75B3C8-E6D3-4F39-8094-5C0BF96639D5
34. Liu Y, Zhang X, Hao P. The effect of topography and wettability of biomaterials on platelet adhesion. J Adhes Sci Technol. 2016;30(8):878–93.
35. Rezaie HR, Bakhtiari L, Öchsner A. Biomaterials and Their Applications. 1st ed. SPRINGER BRIEFS IN MATERIALS. Springer International Publishing; 2015.
36. Ramot Y, Haim-Zada M, Domb AJ, Nyska A. Biocompatibility and safety of PLA and its copolymers. Adv Drug Deliv Rev. 2016;107:153–62.
37. Bank RA, Zandstra J, Room H, Petersen AH, Van Putten SM. Biomaterial Encapsulation Is Enhanced in the Early Stages of the Foreign Body Reaction during Conditional Macrophage Depletion in Transgenic Macrophage Fas-Induced Apoptosis Mice. Tissue Eng - Part A. 2017;23(19–20):1078–87.
38. Rostam HM, Singh S, Salazar F, Magennis P, Hook A, Singh T, et al. The impact of surface chemistry modification on macrophagepolarisation. 2016;221(11):1237–46.
39. Chu C, Liu L, Rung S, Wang Y, Ma Y, Hu C, et al. Modulation of foreign body reaction and macrophage phenotypes concerning microenvironment. J Biomed Mater Res - Part A. 2020;108(1):127–35.
40. Saleh LS, Bryant SJ. In Vitro and In Vivo Models for Assessing the Host Response to Biomaterials. Drug Discov Today Dis Model. 2017;24:13–21.
41. Sussman EM, Halpin MC, Muster J, Moon RT, Ratner BD. Porous implants modulate healing and induce shifts in local macrophage polarization in the foreign body reaction. Ann Biomed Eng. 2014;42(7):1508–16.
42. Spiller KL, Nassiri S, Witherel CE, Anfang RR, Ng J, Nakazawa KR, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials [Internet]. 2015;37:194–207. Available from: http://dx.doi.org/10.1016/j.biomaterials.2014.10.017
43. Alhamdi JR, Peng T, Al-Naggar IM, Hawley KL, Spiller KL, Kuhn LT. Controlled M1-to-M2 transition of aged macrophages by calcium phosphate coatings. Biomaterials [Internet]. 2019;196:90–9. Available from: https://doi.org/10.1016/j.biomaterials.2018.07.012
44. Spiller KL, Koh TJ. Macrophage-based therapeutic strategies in regenerative medicine Kara. Adv Drug Deliv Rev. 2017;122:74–83.
45. Yang J, Jao B, Mcnally AK, Anderson JM. In vivo quantitative and qualitative assessment of foreign body giant cell formation on biomaterials in mice deficient in natural killer lymphocyte subsets, mast cells, or the interleukin-4 receptorα and in severe combined immunodeficient mice. J Biomed Mater Res - Part A. 2014;102(6):2017–23.
46. Sepúlveda RV, Borges APB, Conceição LG, Valente FL, Carlo Reis EC, Bohnenberger IB. Composite synthetic hydroxyapatite 30%, in two physical states, as dermal filler. Rev Ceres. 2013;60(4):458–64.
47. Meyer U, Büchter A, Wiesmann HP, Joos U, Jones DB. Basic reactions of osteoblasts on structured material surfaces. Eur Cells Mater. 2005;9:39–49.
48. Rabel K, Kohal RJ, Steinberg T, Tomakidi P, Rolauffs B, Adolfsson E, et al. Controlling osteoblast morphology and proliferation via surface micro-topographies of implant biomaterials. Sci Rep [Internet]. 2020;10(1):1–14. Available from: https://doi.org/10.1038/s41598-020-69685-6
49. Zhuang XM, Zhou B, Ouyang JL, Sun HP, Wu YL, Liu Q, et al. Enhanced MC3T3-E1 preosteoblast response and bone formation on the addition of nano-needle and nano-porous features to microtopographical titanium surfaces. Biomed Mater. 2014;9(4).
50. Mendonça G, Mendonça DBS, Simões LGP, Araújo AL, Leite ER, Duarte WR, et al. The effects of implant surface nanoscale features on osteoblast-specific gene expression. Biomaterials. 2009;30(25):4053–62.
51. Martinez MAF, Balderrama Í de F, Karam PSBH, de Oliveira RC, de Oliveira FA, Grandini CR, et al. Surface roughness of titanium disks influences the adhesion, proliferation and differentiation of osteogenic properties derived from human. Int J Implant Dent. 2020;6(1).
52. Alford AI, Kozloff KM, Hankenson KD. Extracellular matrix networks in bone remodeling. Int J Biochem Cell Biol [Internet]. 2015;65:20–31. Available from: http://dx.doi.org/10.1016/j.biocel.2015.05.008
53. Chen S, Guo Y, Liu R, Wu S, Fang J, Huang B, et al. Tuning surface properties of bone biomaterials to manipulate osteoblastic cell adhesion and the signaling pathways for the enhancement of early osseointegration. Colloids Surfaces B Biointerfaces [Internet]. 2018;164:58–69. Available from: http://dx.doi.org/10.1016/j.colsurfb.2018.01.022
54. Nakamura M, Hiratai R, Hentunen T, Salonen J, Yamashita K. Hydroxyapatite with High Carbonate Substitutions Promotes Osteoclast Resorption through Osteocyte-like Cells. ACS Biomater Sci Eng. 2016;2(2):259–67.
55. Schilling AF, Linhart W, Filke S, Gebauer M, Schinke T, Rueger JM, et al. Resorbability of bone substitute biomaterials by human osteoclasts. 2004;25:3963–72.
56. Han G, Zuo J, Holliday LS. Specialized roles for actin in osteoclasts: Unanswered questions and therapeutic opportunities. Biomolecules. 2019;9(1).
57. Khan UA, Hashimi SM, Khan S, Quan J, Bakr MM, Forwood MR, et al. Differential expression of chemokines, chemokine receptors and proteinases by foreign body giant cells (FBGCs) and osteoclasts. J Cell Biochem. 2014;115(7):1290–8.
58. Ahmed GJ, Tatsukawa E, Morishita K, Shibata Y, Suehiro F, Kamitakahara M, et al. Regulation and biological significance of formation of osteoclasts and foreign body giant cells in an extraskeletal implantation model. Acta Histochem Cytochem. 2016;49(3):97–107.
59. Klenke FM, Liu Y, Yuan H, Hunziker EB, Siebenrock KA, Hofstetter W. Impact of pore size on the vascularization and osseointegration of ceramic bone substitutes in vivo. J Biomed Mater Res - Part A. 2008;85(3):777–86.
60. Vital CC, Borges APB, Fonseca CC, Tsiomis AC, Carvalho TB, Fontes EB, et al. Biocompatibilidade e comportamento de compósitos de hidroxiapatita em falha óssea na ulna de coelhos. Arq Bras Med Vet e Zootec. 2006;58(2):175–83.
61. Borges APB, Rezende CMF, Ribeiro MFB, Melo EG, Nóbrega Neto PI. Hidroxiapatita sintética como substituto ósseo em defeito experimental provocado no terço proximal da tíbia em cão: aspectos à microscopia eletrônica de transmissão. Arq Bras Med Veterinária e Zootec. 2000;52(6):616–20.
Publicado
2021-03-01