ANÁLISE DAS NOTIFICAÇÕES DE DENGUE NO PARANÁ: ESTUDO DE CASO A PARTIR DA ESTATÍSTICA DESCRITIVA E ANÁLISE DE CORRESPONDÊNCIA MÚLTIPLA.

Palabras clave: dengue, notificación de enfermedades, sistemas de información en salud, análisis multivariado, análisis de correspondencias múltiples.

Resumen

El objetivo de este estudio es describir las notificaciones de dengue en Paraná, Brasil, en el año epidemiológico 2019-2020. Los registros fueron extraídos del Sistema de Agravamiento de Notificaciones (SINAN). Además de las estadísticas descriptivas, se utilizó el análisis de correspondencias múltiples para explorar las relaciones entre 51 variables presentes en el sistema, incluida la información socioeconómica y clínica. El período representó un récord en la serie histórica para el estado, con 366.760 notificaciones, de las cuales el 66,59% fueron confirmadas. Las defunciones por la enfermedad fueron 198, lo que representa el 0,054% de las notificadas. El criterio de confirmación adoptado, en la mayoría de los casos, fue el clínico-epidemiológico, utilizado en el 65,88% del total. Se utilizaron pruebas de laboratorio específicas como criterio de confirmación en el 27,31% de los individuos. También se identificó una mayor asociación entre las variables de enfermedades preexistentes y los niveles de casos alarmantes (DAS) y graves (DG) de dengue. Además, se observaron relaciones entre variables socioeconómicas específicas y signos clínicos del dengue clásico y se describen en los resultados. La investigación pretende contribuir a ofrecer un panorama del registro de notificaciones de dengue en Paraná, para el año epidemiológico abordado y sugerir otras posibilidades para análisis exploratorios posteriores.

 

Biografía del autor/a

João Carlos Zayatz, Universidade Estadual de Maringá

Graduado em Engenharia de Produção pela Universidade Estadual de Maringá (2012) e Mestre em Engenharia de Produção pela Universidade Estadual de Maringá (2022). Tem interesse na área de Pesquisa Operacional, Engenharia de Operações e Processos de Produção

SYNTIA LEMOS COTRIM, Universidade Estadual de Maringá

Graduado en Ingeniería de Producción por la Universidad Estadual de Maringá, Magíster en Ingeniería Urbana y Doctorado en Ingeniería Química por la Universidad Estadual de Maringá. Profesor adjunto de la carrera de Ingeniería de Producción y profesor titular del Programa de Posgrado en Ingeniería de Producción PGP-UEM.

Paulo César Ossani , Universidade Estadual de Maringá

Doutorado em Estatística e Experimentação Agropecuária pela Universidade Federal de Lavras (UFLA), Mestrado em Estatística e Experimentação Agropecuária pela Universidade Federal de Lavras (UFLA), Mestrado em Matemática e Estatística pela Universidade Vale do Rio Verde de Três Corações (UNINCOR), Especialização em Educação Matemática pela Universidade Vale do Rio Verde de Três Corações (UNINCOR), Licenciatura em Matemática pela Universidade do Estado de Minas Gerais (UEMG). Experiência em Estatística Multivariada, Estatística Computacional, Machine Learning e no desenvolvimento de softwares para auxiliar na resolução de problemas matemáticos/estatísticos. Experiência no ensino superior em diversas disciplinas de matemática e estatística, além de ministrar cursos de MatLab e R.

Gislaine Camila Lapasini Leal, Universidade Estadual de Maringá

G.C.L. Leal. is an adjunct professor in the Production Engineering Department at Maringá State University, Paraná, Brazil. She is also part of the postgraduate programs in Computer Science and Production Engineering at the same university.

Citas

1. Messina JP, Brady OJ, Golding N, Moritz UGK, Wint GRW, Ray SE, et al. The current and future global distribution and population at risk of dengue. Nat Microb. 2019: 4(9):1508-1515.
2. Wilder-Smith A, Ooi EE, Horstick O, Wills B. Dengue. The Lancet. 2019; 393(10169): 350-363.
3. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, et al. The global distribution and burden of dengue. Nature. 2013; 496 (7446):504-507.
4. Yaseen HM, Simon F, Deparis X, Marimoutou C. Identification of initial severity determinants to predict arthritis after chikungunya infection in a cohort of French gendarmes. BMC musculoskeletal disord. 2014; 15 (1):1-8.
5. Higuera-Mendieta D R, Cortés-Corrales S, Quintero J, González-Uribe C. KAP surveys and dengue control in Colombia: disentangling the effect of sociodemographic factors using multiple correspondence analysis. PLoS Neglect. Trop. Diseas. 2016; 10(9):e0005016.
6. Fritzell C, Raude J, Adde L, Dusfour I, Quenel P, Flamand C. Knowledge, attitude, and practices of vector-borne disease prevention during the emergence of a new arbovirus: implications for the control of Chikungunya virus in French Guiana. PLoS Neglect Trop Disea. 2016; 10(11): e0005081.
7. Wu C, Guo X, Zhao J, Lv Q, Li H, McNeil E, et al. Behaviors related to mosquito-borne diseases among different ethnic minority groups along the China-laos border ar-eas. Int J of Environm Res and Pub Health. 2017; 14(10): 1227.
8. Siswantining T, Windesia Y, Soemartojo MS, Ariyanto MM, Shahab M R. Predicting the risk of hospitalization to six diagnoses with highest costs based on outpatient claims. In: AIP Conference Proceedings. AIP Publishing LLC, 2018: 020067.
9. Nava-Doctor JE, Sandoval-Ruiz CA, Fernández-Crispín A. Knowledge, attitudes, and practices regarding vector-borne diseases in central Mexico. J of Ethnobiol and Ehnomed. 2021;17(1):1-14.
10. Wichmann O, Gascon J, Schunk M, Puente S, Saiikamaki H, Gjorup I, et al. Severe dengue virus infection in travelers: risk factors and laboratory indicators. The J of Infect Diseases. 2007; 195(8): 1089-1096.
11. Souza-Neto JA, Powell JR, Bonizzoni M. Aedes aegypti vector competence studies: A review. Infec., Genet. and Evol. 2019; 67: 191-209.


12. Flipse J, Smit JM. The complexity of a dengue vaccine: a review of the human antibody response. PLoS neglect. Trop. Diseas..2015; 9 (6): e0003749.
13. WORLD HEALTH ORGANIZATION. Handbook for clinical management of dengue. 2012.
14. Ahmed S, Ali N, Ashraf S, Ilyas M, Tariq W, Chotani R. Dengue fever outbreak: a clinical management experience. J Coll Physic Surg Pak. 2088; 18(1):8-12.
15. Tanner L, Schreiber M, Low JGH, Ong A, Tolfvenstam T, Lai YL, et al. Decision tree algorithms predict the diagnosis and outcome of dengue fever in the early phase of illness. PLoS Negl Trop Dis. 2008; 2(3): e196.
16. Thomas SJ, Yoon I. A review of Dengvaxia®: Development to deployment. Human vacc. and immunotherapeutics. 2019; 15 (10): 2295-2314.
17. Stanaway JD, Shepard DS, Undurraga EA, Halasa YA, Coffeng LE, Brady OJ, et al. The global burden of dengue: an analysis from the Global Burden of Disease Study 2013. The Lancet Infect. Diseas. 2016; 16 (6): 712-723.
18. Laserna A, Barahona-Correa J, Baquero L, Castañeda-Cardona C, Rosselli D. Eco-nomic impact of dengue fever in Latin America and the Caribbean: a systematic re-view. Ver. Panam. de Salud Pública. 2018;42:e111.
19. Montibeler E, Oliveira D. Dengue endemic and its impact on the gross national prod-uct of Brazilian’s economy. Acta tropic. 2018; 178: 318-326.
20. Bavia L, Melanda FN, de Arruda TB, Mosimann ALP, Silveira GF, Aoki MN, et al. Epidemiological study on dengue in southern Brazil under the perspective of climate and poverty. Scientific Reports, v. 10, n. 1, p. 1-16, 2020.
21. Shepard DS, Halasa E, Stanaway YJ. The global economic burden of dengue: a sys-tematic analysis. The Lancet Infect. Dis.2016;16 (8): 935-941.
22. Koopmanschap MA, Van Ineveld BM. Towards a new approach for estimating indi-rect costs of disease. Soc. Sci. and Med. 1992; 34 (9): 1005-1010.
23. Hung TM, Shepard DS, Bettis AA et al. Productivity costs from a dengue episode in Asia: a systematic literature review. BMC Infect. Dis. 2020; 20 (1): 1-18.
24. Teich V, Arinelli R, Fahham L, Aedes aegypti e sociedade: o impacto econômico das arboviroses no Brasil. JBES: Braz. J. of Health Econ. 2017; 9(3): 267-276.
25. Oliveira LNS, Itria A, Lima EC. Cost of illness and program of dengue: A systematic review. PloS One. 2019; 14(2): e0211401.
26. Rafikahmed S, Mateti UV, Subramanya C, Shetty S, Sunny A, Madhusoodanan A. Assessment of direct medical cost using cost of illness analysis in patients with dengue fever-Retrospective study. Clin. Epidemiol. and Gl. Health.2021;12: 100842.
27. Fares RCG, Souza KPR, Añez G, Rios M. Epidemiological scenario of dengue in Brazil. BioMed Res. Int. 2015;2015: 321873.
28. Martin BM, Evans AA, de Carvalho DS et al. Clinical outcomes of dengue virus infec-tion in pregnant and non-pregnant women of reproductive age: a retrospective cohort study from 2016 to 2019 in Paraná, Brazil. BMC Infect Dis. 2022; 22 (5).
29. Brigagão G, Corrêa NAB. Levantamento epidemiológico da dengue no estado do Pa-raná Brasil nos anos de 2011 a 2015. Arquivos de Ciências da Saúde da UNIPAR. 2017; 21(1).
30. RSTUDIO TEAM. RStudio: Integrated Delevopment for R. RStudio, Inc., Boston, 2020. Disponível em , acesso em 01 de março de 2022.
31. Rencher AC, Christensen WF. Methods of multivariate analysis. 3ª ed. New Jersey: John Wiley & Sons, 2012. 781 p.
32. Abdi H, Béra M. Correspondence Analysis. In Encyclopedia of Research Design. Thousand Oaks. 2010.
33. Fogaça TK, Mendonça F. Distribuição espacial dos sorotipos de dengue e fluxos in-termunicipais no Paraná. Raega-O Espaç. Geográf. em Anál. 2019;46(2):101-115.
34. Preto, C. de Mello AM, Maluf EMCP, Krainski ET, Graeff G, de Sousa GA et al. Vaccination coverage and adherence to a dengue vaccination program in the state of Parana, Brazil. Vaccine. 2021;39(4): 711-719.
35. KRAEMER, Moritz UG et al. The global distribution of the arbovirus vectors Aedes aegypti and Ae. albopictus. elife, v. 4, p. e08347, 2015.
36. Ossani PC, Cirillo MA. MVar: Multivariate analysis. Disponível em: URL . R package version 2.1.8, 2021
Publicado
2023-04-29