EXPOENTE DE AVRAMI PELA EQUAÇÃO DE JMAK PARA MÉTODO NÃO-ISOTÉRMICO DE ANÁLISE TÉRMICA

  • Salmo Moreira Sidel Universidade Federal do Tocantins - UFT
  • Elio Idalgo Universidade Paulista - UNIP
  • Keizo Yukimitu Faculdade de Engenharia de Ilha Solteira - FEIS/UNESP
  • João Carlos Silos Moraes Faculdade de Engenharia de Ilha Solteira - FEIS/UNESP
  • Fabio Alencar dos Santos UFGD - Universidade Federal da Grande Dourados

Abstract

This work reports a discussion about of the general theory for phase transformations of Melh-Johnson-Avrami-Kolmogorov in process involving non-isothermal crystallization. This model allows determine as occurs the mechanism of the nucleus formation and of growth of crystalline phases during the crystallization process. To demonstrate the validity this theory, the Avrami exponent (n) of the LiO2-TeO2-WO3 vitreous system was determined from DSC non-isothermal measurements. The obtained results indicate that the nucleation process is volumetric with two-dimensional or three-dimensional crystal growth.

DOI: http://dx.doi.org/10.30609/JETI.2018-2.5566

References

H.E. Kissinger, Journal of Research of the National Bureau of Standards 57, 217 (1956).

H.E. Kissinger, Journal of Research of the National Bureau of Standards 29, 1702 (1957).

D.W. Henderson, Journal of Non-Crystalline Solids 30, 301 (1979).

M. Avrami, Journal of Chemical Physics 7, 1103 (1939).

M. Avrami, Journal of Chemical Physics 8, 212 (1940).

V.M. Fokin, E.D. Zanotto, N.S. Yuritsyn and J.W.P. Schmelzer, Journal of Non-Crystalline Solids 352, 2681 (2006).

S.W. Lee, K.B. Shim, K.H. Auh and P. Knott, Journal of Non-Crystalline Solids 248, 127 (1999).

A.F. Kozmidis-Petrovic, G.R. Strbac and D.D. Strbac, Journal of Non-Crystalline Solids 353, 2014 (2007).

K. Cheng, Materials Science and Engineering B: Solid State Materials for Advanced Technology 60, 194 (1999).

L.M. Guimarães and E.D. Zanotto, Química Nova 26, 1 (2003).

J. Vázquez, P.L. Lópes-Alemany and R. Jiménez-Garay, Journal of Physics and Chemistry of Solids 61, 493 (2000).

M.C. Kuo, J.C. Huang and M. Chen, Materials Chemistry and Physics 99, 258 (2006).

K. Matusita, T. Komatsu and R. Yokota, Journal of Materials Science 19, 291 (1984).

Y. Long, R.A. Shanks and Z.H. Stachurski, Progress in Polymer Science 20, 651 (1995).

N. Ziani, M. Belhadji, L. Heireche, Z. Bouchaour and M. Belbachir, Physica B 358, 132 (2005).

E.R. Shaaban, Physica B 373, 211 (2006).

Y.Q. Gao and W. Wang, Journal Non-Crystalline Solids 81, 129 (1986).

E. Idalgo and E.B. Araújo, Journal of Physics D: Applied Physics 40, 3494 (2007).

E. Idalgo and E.B. Araújo, Cerâmica 53, 325 (2007).

E.B. Araújo, E. Idalgo, A.P.A. Moraes, A.G. Souza Filho and J. Mendes Filho, Materials Research Bulletin 44, 1596 (2009).

Published
2018-07-02
Section
Artigos