Descrição da patologia, etiologia e das estratégias farmacológicas e não farmacológicas da Doença de Parkinson
Resumo
A doença de Parkinson (DP) atinge cerca de 6 milhões de pessoas em todo o mundo, sendo a segunda doença neurodegenerativa mais comum. Terapias baseadas na reposição de dopamina são até hoje a principal estratégia de tratamento farmacológico, tendo como a principal droga utilizada a levodopa (L-DOPA). Outras classes de medicamentos são também utilizadas, isoladamente ou em adição a L-DOPA, dependendo da idade do paciente, da sintomatologia presente e do grau da doença. Nesta revisão, são descritos os princípios da patologia, etiologia e as principais linhas de tratamento farmacológico da DP, utilizando como fonte de pesquisa artigos publicados nas bases de dados Medline, Scielo e PubMed de estudos clínicos, básicos e de revisão de revistas com reconhecido impacto no meio acadêmico e científico. Apesar de ainda não possuir cura e acometer vários outros neurotransmissores pelo processo da doença, pacientes acometidos pela DP conseguem obter grande benefício com o tratamento sintomático farmacológico, com impacto direto na qualidade de vida.
Doença de Parkinson. Antiparkisonianos. Levodopa (L-DOPA). Corpúsculos de Lewy.
Referências
Barbosa MT, et al. Parkinsonism and Parkinson's disease in the elderly: a community-based survey in Brazil (the Bambui study). Movement Disorders, 21(6):800-8. 2006.
Bartel A, Leenders KL. Parkinson’s disease: the syndrome, the pathogenesis and pathophysiology. Cortex, 45, 8, 915–21, 2009.
Benbir G et al. Hospital-based study: risk factors in development of motor complications in 555 Parkinson’s patients on levodopa therapy. Clinical neurology and neurosurgery, 108, 8, 726–32, 2006.
Bloem BR, Okun MS. Parkinson's disease. Thee Lancet. 397, 10297, 2284-2303, 2021.
Boggio PS, et al. Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. Journal of the neurological sciences, 249, 1, 31–38, 2006.
Boll M C. et al. Medical Management of Parkinson’s Disease: Focus on Neuroprotection. Current Neuropharmacology, 9, 2, 350- 9, 2011.
Brasil, Ministério da Saúde (MS). Portaria Conjunta nº 10 de 31 de outubro de 2017. Aprova o Protocolo
Clínico e Diretrizes Terapêuticas – Doença de Parkinson. Diário Oficial da União 2017; 09 out.
Cai JP, et al. Safety and efficacy of rasagiline in addition to levodopa for the treatment of idiopathic Parkinson's disease: a meta-analysis of randomised controlled trials. European Neurology, 73, 1-2, 5-12, 2015.
Dauer W, Przedborski, S. Parkinson’s Disease: Mechanisms and Models. Neuron, 39, 6, 889–909, 2003.
Dias-Tosta E, et al. Doença de Parkinson-recomendações. Academia Brasileira de Neurologia, 1ª ed., 2010.
Ducan R, Earhart, G. Randomized controlled trial of community-based dancing to modify disease progression in Parkinson disease. Neurorehabilitation and neural repair, 26, 2, 132–43, 2012.
Ferraz HB. Agonistas Dopaminérgicos no tratamento da Doença de Parkinson. Revista Neurociências, 12 4, 2004.
Floel A, et al. Levodopa increases memory encoding and dopamine release in the striatum in the elderly. Neurobiology of Aging, 2, 267-79, 2008.
Fredriksson et al. Running wheel activity restores MPTP-induced functional deficits. Journal of neural transmission, 118, 3, 407–20, 2011.
Fregni F, et al. Repetitive transcranial magnetic stimulation is as effective as fluoxetine in the treatment of depression in 75 patients with Parkinson’s disease. Journal of neurology, neurosurgery, and psychiatry, 75, 8, 1171–74, 2004.
GBD 2016 Parkinson’s Disease Collaborators. Global, regional, and national burden of Parkinson’s disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology, 7, 11, 939-953, 2018.
Gerecke, et al. Exercise protects against MPTP-induced neurotoxicity in mice. Brain research, 1341, 72–83, 2010.
Hauser RA, et al. Efficacy of rasagiline in early Parkinson's disease: a metaanalysis of data from the TEMPO and ADAGIO studies. International Journal of Neuroscience, 126, 10, 942-6, 2016.
Hilario WF, et al. Cholinergic and Dopaminergic Alterations in Nigrostriatal Neurons Are Involved in Environmental Enrichment Motor Protection in a Mouse Model of Parkinson’s Disease. Journal of Molecular Neuroscience, 60, 4, 453-464, 2016.
Khan M M, et al. Absence of Glia Maturation Factor Protects Dopaminergic Neurons and Improves Motor Behavior in Mouse Model of Parkinsonism. Neurochemical Research, 40, 5, 980–90, 2015.
Lee F, Liu F. Genetic factors involved in the pathogenesis of Parkinson's disease. Brain Research Reviews, 58, 2, 354-64, 2008.
Lees A, Comparison of therapeutic effects and mortality data of levodopa and levodopa combined with selegiline in patients with early, mild Parkinson’s disease. Parkinson’s Disease Research Group of the United Kingdom. BMJ, 311, 1602-1607, 1995.
Liao X, et al. Levodopa/carbidopa/entacapone for the treatment of early Parkinson's disease: a meta-analysis. Neurol Sci, Disponível em: https://doi.org/10.1007/s10072-020-04303-x, 2020. Acesso em 29 de nov. 2021.
Mizoguchi K, et al. Amantadine increases the extracellular dopamine levels in the striatum by re-uptake inhibition and by N-methyl-Daspartate antagonism. Brain Research, 662, 255-258, 1994.
Moraes LS, et al. Medicinal plant Combretum leprosum mart ameliorates motor, biochemical and molecular alterations in a Parkinson's disease model induced by MPTP. Journal of Ethnopharmacology. 185, 68-76, 2016.
Moreira CS, et al. Doença de Parkinson: como diagnosticar e tratar. Revista Científica da Faculdade de Medicina de Campos, Rio de Janeiro, 2, 2, 19-29, 2007.
Moreira CS, et al. Doença de Parkinson: como diagnosticar e tratar. Revista Científica da FMC, Vol. 2, 2, 2007.
Moriguchi S, Yabuki Y, Fukunaga K. Reduced calcium/calmodulindependent protein kinase II activity in the hippocampus is associated with impaired 79 cognitive function in MPTP-treated mice. Journal of neurochemistry, 120, 4, 541–51, 2012.
Mosley L, et al. Neuroinflammation, oxidative stress, and the pathogenesis of Parkinson's disease. Clinical Neuroscience Research, 6, 1, 261-81, 2006.
Nithianantharajah J, Hannan A J. Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nature reviews. Neuroscience,7, 9, 697–709, 2006.
Pahwa R, et al. ADS-5102 (Amantadine) Extended-Release Capsules for Levodopa-Induced Dyskinesia in Parkinson Disease (EASE LID Study): A Randomized Clinical Trial. Journal of the American Medical Association, 74, 8, 941-949, 2017.
Pang T, Hannan A. Enhancement of cognitive function in models of brain disease through environmental enrichment and physical activity. Neuropharmacology, 64, 515–28, 2013.
Parkinson J, et al. An Essay on the Shaking Palsy. The Journal of Neuropsychiatry and Clinical Neurosciences, 14, 2, 223-236, 2002.
Pfeiffer H C. et al. Cognitive impairment in early-stage non-demented Parkinson’s disease patients. Acta neurologica Scandinavica,129, 5 307–18, 2013.
Reale M, et al. Peripheral cytokines profile in Parkinson’s disease. Brain, behavior, and immunity, 23, 1, 55–63, 2009.
Robakis D, Fahn S. Defining the Role of the Monoamine Oxidase-B Inhibitors for Parkinson’s Disease. CNS Drugs, 29, 6,433–441, 2015.
Yabuki Y, et al. Nobiletin treatment improves motor and cognitive deficits seen in MPTP-induced Parkinson model mice. Neuroscience, 259, 126–41, 2014.
Copyright (c) 2021 Lívia Silveira de Moraes Hilario, Willyan Franco Hilario
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Ao publicar na PECIBES, os direitos de copyright são mantidos pelos autores. Acreditamos que isto permite aos autores ampla divulgação do trabalho, sendo os mesmos responsáveis por todas as informações veiculadas. No entanto, em caso de reuso dos dados, a origem (Revista PECIBES) deve ser citada.