Symbology for differential and Integral Calculus in a historical perspective
DOI:
https://doi.org/10.46312/pem.v18i51.22531Keywords:
Mathematicians, Notations, History of MathematicsAbstract
The objective is to identify the proposed notations for basic concepts of Calculus from the analysis of books and scientific articles by mathematicians and authors of mathematics books from the seventeenth to the twentieth century. The investigation answers the question: How were the symbols of CDI built, transformed and consolidated throughout the end of the seventeenth century and to the twentieth century? The method was the analytical bibliographic and the sources used the original texts of 26 mathematicians. The presentation of the notations, distribute them in three periods: 1) CDI notations in the seventeenth and eighteenth centuries; 2) CDI notations in the nineteenth century and 3) CDI notations of the twentieth century. I conclude in the 17th and 18th centuries, mathematicians demonstrated that they had doubts about which notation would be the most appropriate. In the 19th century, many contributions occurred to mathematical symbology, inadequate notations were forgotten, and in the 20th century, little was added to the notations that began to consolidate and are still used today.
References
BERKELEY, George. The analyst. Dublin: David R. Wilkins (Ed.), 2002. Disponível em: https://www.maths.tcd.ie/pub/HistMath/People/Berkeley/Analyst/Analyst.pdf. Acesso em 28 março 2023.
BLOCH, Marc. Apologia da História ou o ofício do historiador. Rio de Janeiro: Zahar, 2001.
BOLYAI, W. (1832) Tentamen juventutem stuiosam in elementa matheseo pirae, elemtaris ac sublimioris, method intuitive, evidentiae que huic propria, introduducendi. Tomus primus. Disponível em: https://ia800909.us.archive.org/12/items/tentamenjuventu1boly/tentamenjuventu1boly.pdf. Acesso em: 3 de maio 2023.
CAJORI, Florian. A history of mathematical notations. New York: Dover, 1993.
CAUCHY, Augustin- Louis. Cours d’Analyse. Paris: Imprensa Real, 1821.
CAUCHY, Augustin- Louis. Mémoire sul es intégrales définies, prises entre des limites imaginaires. Paris: Libraires du Roi et de la Bibliotheque du Roi, 1825.
CAUCHY, Augustin- Louis. Leçons sur le Calcul Différentiel. Paris: Libraires du Roi et de la Bibliothéque du Roi, 1829.
CARNOT, Lazare. Réflexions sur la métaphysique du Calcul Infinitésimal. Paris: Chez Duprat, 1797.
CRAMER, Gabriel. Introduction a L’Analyse des lignes courbes algébriques. Geneve: Chez les Freres Cramer & Cl. Philibert, 1750. Disponível em: https://gallica.bnf.fr/ark:/12148/bd6t57376812?rk=42918;4#
CRELLE, August Leopold. Versuch einer rein algebraichen und gegenwärtigen Zustande der Mathematik angemessenen Darstellung der Rechnung mit veränderlichen Grössen. Göttingen: Wandenhoel und Ruprecht, 1813.
CUNHA, José Anastácio. Principios Mathematicos. Lisboa: Oficina Rodrigues, 1790.
DAVIS, Philip.; HERSH, Reuben. A experiência matemática. Rio de Janeiro: Francisco Alves, 1985.
DIRKSEN, H. Über die Bedingungen der convergenz und der divergenz der unendlichen reihen. Abhandlungen der Königlichen Akademie der Wissenschaften zu Berlin. Berlin: Druckerei der Königlichen Akademie der Wissenschaften, p. 77- 107, 1834.
EULER, Leonard. Introduction à L’Analyse Infinitesimale. V.1. Paris: Chez Barrois, 1796.
EULER, Leonard. Institutiones Calculi Differentialis. Academiae Imperialis Scientiarum: Petropolotanae, 1755. Disponível em: https://numelyo.bmlyon.fr/f_view/BML:BML_00GOO0100137001101687403. Acesso em: 12 maio de 2023.
EULER, Leonard. Institutiones Calculi Integralis. V. iv. Petropoli; Academiae Imperialis Scientiarum, 1794.
FOURIER, Joseph. Théorie de la Chaleur. Paris: Chez Firmin Didot, père et fils, 1822. Disponível em: https://gallica.bnf.fr/ark:/12148/bpt6k1045508v?rk=42918;4. Acesso em: 2 abril de 2023.
GLOCK, Hans-Johann. Dicionário Wittgenstein. Trad. Helena Martins. Rio de Janeiro: Zahar, 1988.
HALMOS, Paul; STEENROD,Norman; SCHIFFERM, Menahem; DIEUDONONNÉ, Jean. How to write Mathematics. Providence: Americal Mathematics Society, 1973.
L'HUILLIER, Simon Antoine. Exposition Elémentaire des príncipes des calculs supérieurs. Berlin: George Jacques Decker Imprimeur du Roi, 1786. Disponível em: https://gallica.bnf.fr/ark:/12148/bpt6k62055z/f12.item. Acesso em: 2 abril de 2023.
LACROIX, Silvestre. Traité élémentaire du calcul différentiel et du calcul integral. Tome 1. Paris: Duprat, 1797.
LACROIX, Silvestre. Traité du calcul différentiel et du calcul integral. Tome 1. 7ª ed.. Paris: Mallet-Bachelier, 1820. Disponível em: https://gallica.bnf.fr/ark:/12148/bpt6k62145191.r=Lacroix%2C%20Silvestre-Fran%C3%A7ois?rk=493564;4#.Acesso em 2 junho de 2023.
LAGRANGE , Joseph Louis. Leçons sur le Calcul des Fonctions. Paris: Chez Courcier, 1806.Disponível em: https://gallica.bnf.fr/ark:/12148/bpt6k86261t?rk=64378;0 Acesso em: 29 maio de 2024.
LEATHEM, John Gaston (1922). Volume and surface integrals used in physics. Reimpressão. Cambridge: University Press, 1922.
LEIBNIZ, Gottfried (1830). Leibnizens mathematische Schriften, v. 2. Disponível em: file:///Users/Circe/Downloads/Leibnizens_gesammelte_Werke_S%C3%A9r_3_[...]Leibniz_Gottfried_bpt6k111371d.pdf. Acesso em: 29 de maio de 2023.
LEIBNIZ, Gottfried. Leibnizens gesammelte Werke. Georg Pertz (Org.). Halle: H. W. Schmid, 1860.
LEIBNIZ, Gottfried. Der Briefwecksel von Gottfried Wilhelm Leibniz mit Mathematikern. Berlin: Mayer & Müller, 1899.
LEITHOLD, Louis. O Cálculo com geometria analítica. 3ª ed. São Paulo: Editora Harbra, 1994.
NEWTON, Isaac (1704). Optick or a treatise of the reflexions, refractions, inflexions and colours of light. London: Sam. Smith and Benj. Walford, 1704.
OHM, Martin. Lehrbuch der höheren Analysis. Parte 2. Berlin: T.H. Riemann, 1830. Disponível em: https://books.google.com.br/books?id=7mlbAAAAQAAJ&printsec=frontcover&hl=pt-BR&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false. Acesso em: 20 maio de 2023.
PEANO, Geroge. Formulaire Mathematique. Turin: Bocca Freres, 1903.
PIERCE, Benjamin. An elementar treatise on curves, functions and forces. V.1. Boston e Cambridge: James Munroe and Company, 1942.
SMITH, Percey. Elementary calculus: a text-book for the use of students in general science. New York, Cincinnati, Chicago: American Book Company, 1903.
STEWART, James. Cálculo. v. 1. 7ª ed. Brasil: Cengage Learning, 2014.
STOCKLER, Francisco Garção. Compêndio da theorica dos limites ou introdução ao methodo das fluxões. Lisboa: Oficina da Academia Real das Ciências, 1794.
SWIFT, Jonathan. Viagens de Gulliver. 3. ed. São Paulo: CERED, 2006.
WEIERSTRASS, Karl. Mathematische Werke von Karl Weierstrass. Herausgegeben unter Mitwirkung einer von der Königlich preussischen Akademie der Wissenschaften eingesetzten Commission. Berlin: Academia de Ciências, 1894. Disponível em: https://archive.org/details/mathematischewer01weieuoft/page/254/mode/2up. Acesso em: 20 maio de 2023.
WHITEAHED, Alfred Norton. Introdução à matemática. Coimbra: Armênio Amado, 1948.
YOUNG, William. The Fundamental Theorems of The Differentiel Calcul. Cambridge: University Press, 1910.