Sensitive-Computational Thinking of Pre-Service Mathematics Teachers on Nested Loops
DOI:
https://doi.org/10.46312/pem.v13i32.10025Keywords:
Computational Thinking, Aesthetics, Digital technology, CodingAbstract
In this paper we emphasize the aesthetic-sensitive dimension of computational thinking in a scenario of pre-service mathematics teacher education. Through the development of teaching experiments we investigate aspects (skills/concepts/affordances) of computational thinking of mathematics majors emergent in the exploration of a task based on coding with the online application based on a coding application developed using Blockly. The findings highlight the processes of experimentation with technology in which the command named repeat was used in several manners in the attempt of creating nested loops to solve the task. The sensitive-computational thinking points to the perception and modification of aesthetic elements such as the form of objects, colors, symmetries, patterns, sounds, etc. and its relation to commands that compose the code and the overall structure of the code.
References
ABBAGNANO, N. Dicionário de filosofia. São Paulo: Martins Fontes, 2007.
ARAÚJO, J. L.; BORBA, M. C. Construindo Pesquisas Coletivamente em Educação Matemática. In: BORBA, M. C.; ARAÚJO, J. L. (Org.) Pesquisa Qualitativa em Educação Matemática, Belo Horizonte: Autêntica, 2004.
BARBOSA, L. M. Aspectos do Pensamento Computacional na Construção de Fractais com o software GeoGebra. Dissertação Mestrado em Educação Matemática). Universidade Estadual Paulista (Unesp), Instituto de Geociências e Ciências Exatas, Rio Claro: 2019.
BICUDO, M. A. V. Pesquisa em educação matemática. Pro-posições, Campinas, v. 4, n. 10, p. 18-23, mar. 1993. Disponível em: https://www.fe.unicamp.br/pf-fe/publicacao/1755/10-artigos-bicudomav.pdf. Acesso em: 20 abr. 2020.
BOAL, A. A estética do oprimido. Rio de Janeiro: Garamond, 2009.
BORBA, M. C.; SCUCUGLIA, R. R. S.; GADANIDIS, G. Fases das Tecnologias Digitais em Educação Matemática: sala de aula e internet em movimento. 1. ed. Belo Horizonte: Autêntica, 2014.
BORBA, M. C.; VILLARREAL, M. E. Humans-With-Media and the Reorganization of Mathematical Thinking: information and communication technologies, modeling, experimentation and visualization. v. 39, New York: Springer, 2005.
BRASIL, Secretaria de Educação Fundamental. Parâmetros Curriculares Nacionais: Matemática. Brasília: MEC, 1997.
BRASIL. Base Nacional Comum Curricular. Brasília, DF: MEC, 2017.
BRENNAN, K.; RESNICK, M. New frameworks for studying and assessing the development of computational thinking. AERA 2012, Vancouver, Canada, 2012. Disponivel em <http://web.media.mit.edu/~kbrennan/files/Brennan_Resnick_AERA2012_CT.pdf>. Acesso em: 01 jul. 2018.
CHAMSKI, Z. Nested loop sequences: towards efficient loop structures in automatic parallelization. [Research Report] RR-2094, INRIA. 1993.
COOPER, M. Advanced Bash-Scripting Guide: An in-depth exploration of the art of shell scripting. Available at: https://www.tldp.org/LDP/abs/html/index.html, 2014.
DEWEY, J. Art as experience. São Paulo, Brazil: Martins Fontes, 2010.
GADANIDIS, G. Repeating Patterns V. 6. 2017a. Available at: https://wordpress.oise.utoronto.ca/robertson/files/2018/04/repeating-patterns-tutorial.pdf
GADANIDIS, G. Five Affordances of Computational Thinking to Support Elementary Mathematics Education. Journal of Computers in Mathematics and Science Teaching, v.36, n.2, p.143-151, 2017b.
GADANIDIS, G.; YIU. C.. Repeating Patterns + Code + Art ... [v2], 2017. Available at: https://mathsurprise.ca/apps/patterns/v2/.
GADANIDIS, G.; HUGHES, J.; NAMUKASA, I.; SCUCUGLIA, R. Computational modeling in elementary mathematics teacher education. In: LLINARES, S.; CHAPMAN, O (Eds.). International Handbook of mathematics teacher education: Volume 2 (Second edition). The Netherlands: Koninklijke Brill NV, 2019. p. 197-222.
GIBBS, D. Nesting Loops & Statements in C Programming. 2020. Retrieved from https://study.com/academy/lesson/nesting-loops-statements-in-c-programming.html.
ISTE/CSTA. Computational Thinking Teacher Resource. 2ed., 2011. Disponivel em: <http://csta.acm.org/Curriculum/sub/CurrFiles/472.11CTTeacherResources_2ed-SP-vF.pdf>. Acesso em: 01 jul. 2018
MACHADO, N.J. Matemática e realidade: das concepções às ações docentes. 8a. ed.. São Paulo: Cortez, 2013.
MANNILA, L.; DAGIENE, V.; DEMO, B.; GRGURIN, N.; MIROLO, C.; ROLANDSSON, L.; SETTLE, A. Computational Thinking in K-9 Education. In: Proceedings of the WorkingGroup Reports of the 2014 on Innovation & Technology in Computer Science Education Conference. Uppsala, Sweden, p. 1-29, 2014.
MARSHAL, M. N. Sampling for qualitative research. Family Practice, [s.l.], v. 13, n. 6, p. 522–526, 1996.
PATTON, M. Q. Qualitative Research & Evaluation Methods. 3rd edition. Sage Publications, Inc., 2002.
PAPERT, S. Mindstorms: children, computers and powerful ideas. New York: Basic Books, Inc., 1980.
PAPERT, S. The Children’s Machine. New York: Basic Books, 1993.
PONTE, J. P. Estudos de caso em educação matemática. Bolema, v. 25, p. 105-132, 2006.
POWELL, A. B.; FRANCISCO, J. M.; MAHER, C.A. Uma abordagem à Análise de dados de vídeo para investigar o desenvolvimento de Idéias e Raciocínios Matemáticos de Estudantes. Bolema, Rio Claro, v. 21, n. 17, p. 81-140, 2004.
SINCLAIR, N. The roles of the aesthetic in mathematical inquiry. Mathematical Thinking and Learning, v. 6, n. 3, p. 261–284, 2004.
STAKE, R. E. Qualitative Case studies. In: DENZIN, N. K.; LINCOLN, Y. S. (Eds.). The Sage handbook of qualitative research. London: Sage Publications, 2005
STEFFE, L. P.; THOMPSON, P. W. Teaching experiment methodology: Underlying principles and essential elements. In: LESH, R.; KELLY, A.E. (Eds.). Research design in mathematics and science education. Hillsdale, NJ: Erlbaum, 2000. p. 267-307.
WING, J. M. Computational thinking and thinking about computing. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, [s.l.], v. 366, n. 1881, p. 3717–3725, 2008.