Orbital - Vol. 9 No. 4 - July - September 2017
FULL PAPERS

Self-Organizing Maps Neural Networks Applied to the Classification of Ethanol Samples According to the Region of Commercialization

Aline Regina Walkoff
Universidade Estadual de Ponta Grossa, Departamento de Química
Sandra Regina Masetto Antunes
Universidade Estadual de Ponta Grossa, Departamento de Química
Maria Elena Payret Arrúa
Universidade Estadual de Ponta Grossa, Departamento de Química
Lívia Ramazzoti Chanan Silva
Universidade Estadual de Londrina, Departamento de Química
Dionísio Borsato
Universidade Estadual de Londrina, Departamento de Química
Paulo Rogério Pinto Rodrigues
Universidade Centro-oeste do Paraná, Departamento de Química
Published October 2, 2017
Keywords
  • Kohonen,
  • pH,
  • segmentation,
  • sugarcane
How to Cite
(1)
Walkoff, A. R.; Antunes, S. R. M.; Arrúa, M. E. P.; Silva, L. R. C.; Borsato, D.; Rodrigues, P. R. P. Self-Organizing Maps Neural Networks Applied to the Classification of Ethanol Samples According to the Region of Commercialization. Orbital: Electron. J. Chem. 2017, 9, 248-255.

Abstract

Physical-chemical analysis data were collected, from 998 ethanol samples of automotive ethanol commercialized in the northern, midwestern and eastern regions of the state of Paraná. The data presented self-organizing maps (SOM) neural networks, which classified them according to those regions. The self-organizing maps best configuration had a 45 x 45 topology and 5000 training epochs, with a final learning rate of 6.7x10-4, a final neighborhood relationship of 3x10-2 and a mean quantization error of 2x10-2. This neural network provided a topological map depicting three separated groups, each one corresponding to samples of a same region of commercialization. Four maps of weights, one for each parameter, were presented. The network established the pH was the most important variable for classification and electrical conductivity the least one. The self-organizing maps application allowed the segmentation of alcohol samples, therefore identifying them according to the region of commercialization.

DOI: http://dx.doi.org/10.17807/orbital.v9i4.982